114 resultados para Key-words
Resumo:
The risk of contracting a sexually transmitted infection while traveling abroad is increased in certain populations. Pre-travel consultation should include the education of travelers on the prevalence of HIV in the countries visited and on appropriate prevention measures. In patients infected with HIV (PHIV), combined antiretroviral therapy (cART) improves immunity, enabling them to travel with less risk for their health. Pre-travel consultation of PVIH has the following objectives: to determine immune status, to update immunization and to decide on anti-malaria drug prophylaxis, taking into account potential drug interactions with antiretroviral therapy. Vaccine response and duration of protection is shorter-lived in PVIH, especially if the CD4 count is below 200 cells/mm3 and the HIV viral load is detectable. Therefore cART is a cornerstone for disease prevention among patients infected with HIV who travel.
Resumo:
We present a high-quality (>100× depth) Illumina genome sequence of the leaf-cutting ant Acromyrmex echinatior, a model species for symbiosis and reproductive conflict studies. We compare this genome with three previously sequenced genomes of ants from different subfamilies and focus our analyses on aspects of the genome likely to be associated with known evolutionary changes. The first is the specialized fungal diet of A. echinatior, where we find gene loss in the ant's arginine synthesis pathway, loss of detoxification genes, and expansion of a group of peptidase proteins. One of these is a unique ant-derived contribution to the fecal fluid, which otherwise consists of "garden manuring" fungal enzymes that are unaffected by ant digestion. The second is multiple mating of queens and ejaculate competition, which may be associated with a greatly expanded nardilysin-like peptidase gene family. The third is sex determination, where we could identify only a single homolog of the feminizer gene. As other ants and the honeybee have duplications of this gene, we hypothesize that this may partly explain the frequent production of diploid male larvae in A. echinatior. The fourth is the evolution of eusociality, where we find a highly conserved ant-specific profile of neuropeptide genes that may be related to caste determination. These first analyses of the A. echinatior genome indicate that considerable genetic changes are likely to have accompanied the transition from hunter-gathering to agricultural food production 50 million years ago, and the transition from single to multiple queen mating 10 million years ago.
Resumo:
The study of the exotic blocks of the Hawasina Nappes (Sultanate of Oman) leads to give apposit data that allow us to propose a new paleogeographic evolution of the Oman margin in time and space. A revised classification of exotic blocks into different paleogeographical units is presented. Two newly introduced stratigraphic groups, the Ramaq Group (Ordovician to Triassic) and the Al Buda'ah Group (upper Permian to Jurassic) are interpreted as tilted blocks related to the Oman continental margin. The Kawr Group (middle Triassic to Cretaceous) is redefined and interpreted as an atoll-type seamount. The paleogeography and paleoenvironments of these units are integrated into a new scheme of the Neotethyan rifting history. Brecciae and olisto¬liths of the Hawasina series are interpreted to have originated from tectonic movements affecting the Oman margin and the Neotethyan ocean floor. The breccias of late Permian age were generated by the extension processes affecting the margin, and by the creation of the Neotethyan oceanic floor. The breccias of mid-late Triassic age coincide in time with the collision of the Cimmerian continents with Eurasia. In constrast, the breccias of late Jurassic and Cretaceous age are interpreted as resulting to the creation of a new oceanic crust (Semail) off the Oman margin
Resumo:
There is no doubt about the necessity of protecting digital communication: Citizens are entrusting their most confidential and sensitive data to digital processing and communication, and so do governments, corporations, and armed forces. Digital communication networks are also an integral component of many critical infrastructures we are seriously depending on in our daily lives. Transportation services, financial services, energy grids, food production and distribution networks are only a few examples of such infrastructures. Protecting digital communication means protecting confidentiality and integrity by encrypting and authenticating its contents. But most digital communication is not secure today. Nevertheless, some of the most ardent problems could be solved with a more stringent use of current cryptographic technologies. Quite surprisingly, a new cryptographic primitive emerges from the ap-plication of quantum mechanics to information and communication theory: Quantum Key Distribution. QKD is difficult to understand, it is complex, technically challenging, and costly-yet it enables two parties to share a secret key for use in any subsequent cryptographic task, with an unprecedented long-term security. It is disputed, whether technically and economically fea-sible applications can be found. Our vision is, that despite technical difficulty and inherent limitations, Quantum Key Distribution has a great potential and fits well with other cryptographic primitives, enabling the development of highly secure new applications and services. In this thesis we take a structured approach to analyze the practical applicability of QKD and display several use cases of different complexity, for which it can be a technology of choice, either because of its unique forward security features, or because of its practicability.
Resumo:
OBJECTIVE: Best long-term practice in primary HIV-1 infection (PHI) remains unknown for the individual. A risk-based scoring system associated with surrogate markers of HIV-1 disease progression could be helpful to stratify patients with PHI at highest risk for HIV-1 disease progression. METHODS: We prospectively enrolled 290 individuals with well-documented PHI in the Zurich Primary HIV-1 Infection Study, an open-label, non-randomized, observational, single-center study. Patients could choose to undergo early antiretroviral treatment (eART) and stop it after one year of undetectable viremia, to go on with treatment indefinitely, or to defer treatment. For each patient we calculated an a priori defined "Acute Retroviral Syndrome Severity Score" (ARSSS), consisting of clinical and basic laboratory variables, ranging from zero to ten points. We used linear regression models to assess the association between ARSSS and log baseline viral load (VL), baseline CD4+ cell count, and log viral setpoint (sVL) (i.e. VL measured ≥90 days after infection or treatment interruption). RESULTS: Mean ARSSS was 2.89. CD4+ cell count at baseline was negatively correlated with ARSSS (p = 0.03, n = 289), whereas HIV-RNA levels at baseline showed a strong positive correlation with ARSSS (p<0.001, n = 290). In the regression models, a 1-point increase in the score corresponded to a 0.10 log increase in baseline VL and a CD4+cell count decline of 12/µl, respectively. In patients with PHI and not undergoing eART, higher ARSSS were significantly associated with higher sVL (p = 0.029, n = 64). In contrast, in patients undergoing eART with subsequent structured treatment interruption, no correlation was found between sVL and ARSSS (p = 0.28, n = 40). CONCLUSION: The ARSSS is a simple clinical score that correlates with the best-validated surrogate markers of HIV-1 disease progression. In regions where ART is not universally available and eART is not standard this score may help identifying patients who will profit the most from early antiretroviral therapy.
Resumo:
Isolated primary human cells from different donors vary in their permissiveness-the ability of cells to be infected and sustain the replication of human immunodeficiency virus type 1 (HIV-1). We used replicating HIV-1 and single-cycle lentivirus vectors in a population approach to identify polymorphic steps during viral replication. We found that phytohemagglutinin-stimulated CD4(+) CD45RO(+) CD57(-) T cells from healthy blood donors (n = 128) exhibited a 5.2-log-unit range in virus production. For 20 selected donors representing the spectrum of CD4 T-cell permissiveness, we could attribute up to 42% of the total variance in virus production to entry factors and 48% to postentry steps. Efficacy at key intracellular steps of the replicative cycle (reverse transcription, integration, transcription and splicing, translation, and budding and release) varied from 0.71 to 1.45 log units among donors. However, interindividual differences in transcription efficiency alone accounted for 64 to 83% of the total variance in virus production that was attributable to postentry factors. While vesicular stomatitis virus G protein-mediated fusion was more efficacious than CCR5/CD4 entry, the latter resulted in greater transcriptional activity per proviral copy. The phenotype of provirus transcription was stable over time, indicating that it represents a genetic trait.
Resumo:
Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity-ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.
Resumo:
Résumé La cryptographie classique est basée sur des concepts mathématiques dont la sécurité dépend de la complexité du calcul de l'inverse des fonctions. Ce type de chiffrement est à la merci de la puissance de calcul des ordinateurs ainsi que la découverte d'algorithme permettant le calcul des inverses de certaines fonctions mathématiques en un temps «raisonnable ». L'utilisation d'un procédé dont la sécurité est scientifiquement prouvée s'avère donc indispensable surtout les échanges critiques (systèmes bancaires, gouvernements,...). La cryptographie quantique répond à ce besoin. En effet, sa sécurité est basée sur des lois de la physique quantique lui assurant un fonctionnement inconditionnellement sécurisé. Toutefois, l'application et l'intégration de la cryptographie quantique sont un souci pour les développeurs de ce type de solution. Cette thèse justifie la nécessité de l'utilisation de la cryptographie quantique. Elle montre que le coût engendré par le déploiement de cette solution est justifié. Elle propose un mécanisme simple et réalisable d'intégration de la cryptographie quantique dans des protocoles de communication largement utilisés comme les protocoles PPP, IPSec et le protocole 802.1li. Des scénarios d'application illustrent la faisabilité de ces solutions. Une méthodologie d'évaluation, selon les critères communs, des solutions basées sur la cryptographie quantique est également proposée dans ce document. Abstract Classical cryptography is based on mathematical functions. The robustness of a cryptosystem essentially depends on the difficulty of computing the inverse of its one-way function. There is no mathematical proof that establishes whether it is impossible to find the inverse of a given one-way function. Therefore, it is mandatory to use a cryptosystem whose security is scientifically proven (especially for banking, governments, etc.). On the other hand, the security of quantum cryptography can be formally demonstrated. In fact, its security is based on the laws of physics that assure the unconditional security. How is it possible to use and integrate quantum cryptography into existing solutions? This thesis proposes a method to integrate quantum cryptography into existing communication protocols like PPP, IPSec and the 802.l1i protocol. It sketches out some possible scenarios in order to prove the feasibility and to estimate the cost of such scenarios. Directives and checkpoints are given to help in certifying quantum cryptography solutions according to Common Criteria.
Resumo:
Although sleep is defined as a behavioral state, at the cortical level sleep has local and use-dependent features suggesting that it is a property of neuronal assemblies requiring sleep in function of the activation experienced during prior wakefulness. Here we show that mature cortical cultured neurons display a default state characterized by synchronized burst-pause firing activity reminiscent of sleep. This default sleep-like state can be changed to transient tonic firing reminiscent of wakefulness when cultures are stimulated with a mixture of waking neurotransmitters and spontaneously returns to sleep-like state. In addition to electrophysiological similarities, the transcriptome of stimulated cultures strikingly resembles the cortical transcriptome of sleep-deprived mice, and plastic changes as reflected by AMPA receptors phosphorylation are also similar. We used our in vitro model and sleep-deprived animals to map the metabolic pathways activated by waking. Only a few metabolic pathways were identified, including glycolysis, aminoacid, and lipids. Unexpectedly large increases in lysolipids were found both in vivo after sleep deprivation and in vitro after stimulation, strongly suggesting that sleep might play a major role in reestablishing the neuronal membrane homeostasis. With our in vitro model, the cellular and molecular consequences of sleep and wakefulness can now be investigated in a dish.