229 resultados para IN-VITRO ISOLATION
Resumo:
Background: Chemoembolization is used to treat liver malignancies. However recurrence occurs frequently, possibly because of neoangiogenesis triggered by ischemia caused by the embolic agent. In this context, the combination of an embolic agent with an anti-angiogenic drug seems appealing. This study characterizes the in vitro loading and release profile of sunitinib eluting beads of different sizes and their pharmacokinetic profile in a rabbit model. Methods: 70-150 μm and 100-300 μm drug eluting beads (DC Bead, Biocompatibles UK) were loaded by incubation in a sunitinib hydrochloride solution. Drug was quantified by spectrophotometry at 430 nm. Drug release was measured over one-week periods and normalized using an internal standard in 30% ethanol in NaCl 0.9%. New-Zealand white rabbits were used. Eight animals received 0.2 ml of 100-300 μm DC Bead loaded with 6 mg of sunitinib in the hepatic artery (group 1) and 4 animals received 6 mg of sunitinib p.o. (group 2). Half of the animals were sacrificed after 6 hours and half after24 hours. Liver enzymes were measured at 0, 6 and 24 hours in both groups. Plasmatic sunitinib concentration was determined by tandem mass spectroscopy (LC MS/MS) at 0, 1, 2, 3, 4, 5, 6 and 24 hours. At sacrifice, the livers were harvested and sunitinib concentration in liver tissue was assessed by LC MS/MS. Results: High drug loading was obtained for both microsphere bead sizes. Particle shrinking was observed with adsorption of sunitinib. Almost complete release of sunitinib was detected under physiological conditions, with very similar release for 70-150 μm and 100-300 μm (t50%=1.2 h) DC Bead. Conclusions: Sunitinib eluting beads are well tolerated by rabbits when administered in the hepatic artery. No unexpected toxicity was observed. Very high drug concentration can be obtained at the site of embolization with minimal systemic passage.
Resumo:
Brain spectrin, a membrane-related cytoskeletal protein, exists as two isoforms. Brain spectrin 240/235 is localized preferentially in the perikaryon and axon of neuronal cells and brain spectrin 240/235E is found essentially in the neuronal soma and dendrites and in glia (Riederer et al., 1986, J. Cell Biol., 102, 2088 - 2097). The sensory neurons in dorsal root ganglia, devoid of any dendrites, make a good tool to investigate such differential expression of spectrin isoforms. In this study expression and localization of both brain spectrin isoforms were analysed during early chicken dorsal root ganglia development in vivo and in culture. Both isoforms appeared at embryonic day 6. Brain spectrin 240/235 exhibited a transient increase during embryonic development and was first expressed in ventrolateral neurons. In ganglion cells in situ and in culture this spectrin type showed a somato - axonal distribution pattern. In contrast, brain spectrin 240/235E slightly increased between E6 and E15 and remained practically unchanged. It was localized mainly in smaller neurons of the mediodorsal area as punctate staining in the cytoplasm, was restricted exclusively to the ganglion cell perikarya and was absent from axons both in situ and in culture. This study suggests that brain spectrin 240/235 may contribute towards outgrowth, elongation and maintenance of axonal processes and that brain spectrin 240/235E seems to be exclusively involved in the stabilization of the cytoarchitecture of cell bodies in a selected population of ganglion cells.
Resumo:
A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.
Resumo:
Objectives: Dermatophytes are highly specialized fungi which are the most common agents of superficial mycoses in humans and animals. The particular ability of these microorganisms to invade and multiply within keratinized host structures is presumably linked to their secreted keratinolytic activity, which is therefore a major putative virulence attribute of these fungi. The overall adaptation and transcriptional response of dermatophytes during protein degradation and/or infection is largely unknown. Methods: A Trichophyton rubrum cDNA microarray was developed and used for the transcriptional analysis of T. rubrum and Arthroderma benhamiae cells during growth on protein substrates. Moreover, the gene expression profile in A. benhamiae cells was monitored during infection of guinea pigs. Results: T. rubrum and A. benhamiae cells activate a large set of genes encoding secreted endo- and exoproteases during growth on soy and keratin. In addition, other specifically induced factors with potential implication in protein utilization were identified, e.g. multiple transporters, metabolic enzymes, transcription factors and hypothetical proteins with unknown function. Notably however, the protease gene expression profile in the fungal cells during infection was significantly different from the pattern elicited during in vitro growth on keratin. Conclusions: Our results suggest specific functions of individual proteases during infection, which may not be restricted to the degradation of keratin. This first, broad in vivo transcriptional profiling approach in dermatophytes gives new molecular insights into pathogenicity associated adaptation mechanisms that make these microorganisms the most successful causitive agents of superficial mycoses.
Resumo:
Cutaneous Leishmaniasis (CL) caused by Leishmania aethiopica is a public health and social problem with a sequel of severe and mutilating skin lesions. It is manifested in three forms: localized CL (LCL), mucosal CL (MCL) and diffuse CL (DCL). Unresponsiveness to sodium stibogluconate (Sb(V)) is common in Ethiopian CL patients. Using the amastigote-macrophage in vitro model the susceptibility of 24 clinical isolates of L. aethiopica derived from untreated patients was investigated. Eight strains of LCL, 9 of MCL, and 7 of DCL patients together with a reference strain (MHOM/ET/82/117/82) were tested against four antileishmanial drugs: amphotericin B, miltefosine, Sb(V) and paromomycin. In the same order of drugs, IC(50) (μg/ml±SD) values for the 24 strains tested were 0.16±0.18, 5.88±4.79, 10.23±8.12, and 13.63±18.74. The susceptibility threshold of isolates originating from the 3 categories of patients to all 4 drugs was not different (p>0.05). Maximal efficacy was superior for miltefosine across all the strains. Further susceptibility test could validate miltefosine as a potential alternative drug in cases of sodium stibogluconate treatment failure in CL patients.
Resumo:
Cilengitide is a cyclic peptide antagonist of integrins alphavbeta3 and alphavbeta5 that is currently being evaluated as a novel therapeutic agent for recurrent and newly diagnosed glioblastoma. Its mode of action is thought to be mainly antiangiogenic but may include direct effects on tumor cells, notably on attachment, migration, invasion, and viability. In this study we found that, at clinically relevant concentrations, cilengitide (1-100 microM) induces detachment in some but not all glioma cell lines, while the effect on cell viability is modest. Detachment induced by cilengitide could not be predicted by the level of expression of the cilengitide target molecules, alphavbeta3 and alphavbeta5, at the cell surface. Glioma cell death induced by cilengitide was associated with the generation of caspase activity, but caspase activity was not required for cell death since ectopic expression of cytokine response modifier (crm)-A or coexposure to the broad-spectrum caspase inhibitor zVAD-fmk was not protective. Moreover, forced expression of the antiapoptotic protein marker Bcl-X(L) or altering the p53 status did not modulate cilengitide-induced cell death. No consistent effects of cilengitide on glioma cell migration or invasiveness were observed in vitro. Preliminary clinical results indicate a preferential benefit from cilengitide added to temozolomide-based radiochemotherapy in patients with O(6)-methylguanine DNA methyltransferase (MGMT) gene promoter methylation. Accordingly, we also examined whether the MGMT status determines glioma cell responses to cilengitide alone or in combination with temozolomide. Neither ectopic expression of MGMT in MGMT-negative cells nor silencing the MGMT gene in MGMT-positive cells altered glioma cell responses to cilengitide alone or to cilengitide in combination with temozolomide. These data suggest that the beneficial clinical effects derived from cilengitide in vivo may arise from altered perfusion, which promotes temozolomide delivery to glioma cells.
Resumo:
The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.
Resumo:
Objectives: We tested the effects of the three forms of basic calcium phosphate (BCP) crystals (octacalcium phosphate (OCP), carbonate-substituted apatite (CA) and hydroxyapatite (HA)) on monocytes and macrophages on IL-1β secretion. The requirement for the NALP3 inflammasome and TLR2 and TLR4 receptors in this acute response was analyzed.
Resumo:
PURPOSE: The aim of the present study was the in vitro and in vivo evaluation of a novel aqueous formulation based on polymeric micelles for the topical delivery of cyclosporine A for dry eye treatment. METHODS: In vitro experiments were carried out on primary rabbit corneal cells, which were characterized by immunocytochemistry using fluorescein-labeled lectin I/isolectin B4 for the endothelial cells and mouse monoclonal antibody to cytokeratin 3+12 for the epithelial ones. Living cells were incubated for 1 hour or 24 hours with a fluorescently labeled micelle formulation and analyzed by fluorescence microscopy. In vivo evaluations were done by Schirmer test, osmolarity measurement, CyA kinetics in tears, and CyA ocular distribution after topical instillation. A 0.05% CyA micelle formulation was compared to a marketed emulsion (Restasis). RESULTS: The in vitro experiments showed the internalization of micelles in the living cells. The Schirmer test and osmolarity measurements demonstrated that micelles did not alter the ocular surface properties. The evaluation of the tear fluid gave similar CyA kinetics values: AUC = 2339 ± 1032 min*μg/mL and 2321 ± 881.63; Cmax = 478 ± 111 μg/mL and 451 ± 74; half-life = 36 ± 9 min and 28 ± 9 for the micelle formulation and Restasis, respectively. The ocular distribution investigation revealed that the novel formulation delivered 1540 ± 400 ng CyA/g tissue to the cornea. CONCLUSIONS: The micelle formulation delivered active CyA into the cornea without evident negative influence on the ocular surface properties. This formulation could be applied for immune-related ocular surface diseases.
Resumo:
Dendritic cells (DCs) are the most potent antigen-presenting cells in the human lung and are now recognized as crucial initiators of immune responses in general. They are arranged as sentinels in a dense surveillance network inside and below the epithelium of the airways and alveoli, where thet are ideally situated to sample inhaled antigen. DCs are known to play a pivotal role in maintaining the balance between tolerance and active immune response in the respiratory system. It is no surprise that the lungs became a main focus of DC-related investigations as this organ provides a large interface for interactions of inhaled antigens with the human body. During recent years there has been a constantly growing body of lung DC-related publications that draw their data from in vitro models, animal models and human studies. This review focuses on the biology and functions of different DC populations in the lung and highlights the advantages and drawbacks of different models with which to study the role of lung DCs. Furthermore, we present a number of up-to-date visualization techniques to characterize DC-related cell interactions in vitro and/or in vivo.
Resumo:
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.
Resumo:
Fibrin glue products and collagen patches are frequently used as a sealing product, preventing surgical side bleedings. This is especially true in the field of cardiovascular surgery, where increasing numbers of patients are being operated with antiplatelet and anticoagulation therapy. The aim of this report was, in an in vitro hemodynamic setting, to examine the sealant properties of the TachoSil (Nycomed Pharma, Linz, Austria) patch. Burst pressure and normal force of 15 TachoSil sealed defects were measured. This was determined in a closed hydraulic system. Mean burst pressure load for a 5-mm defect was 69+/-11.4 mmHg; for a 7-mm defect was 63+/-16 mmHg; and, 62+/-16 mmHg for the defect with a diameter of 10 mm (P>0.05). The mean calculated normal force was as follows: 0.91+/-0.15 N for the 5 mm defect, 6.5+/-1.6 N for the 7 mm, and 8.1+/-0.75 N for the 10 mm defect. The TachoSil patch has the capability to seal small defects. However, at the larger defects the seal character was significantly reduced. These results suggest that the device may be a good alternative for hemostasis for small defects. The capacity to curtail or stop hemorrhage at the larger defects is unlikely.