136 resultados para stochastic modeling
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.
Resumo:
We consider linear stochastic differential-algebraic equations with constant coefficients and additive white noise. Due to the nature of this class of equations, the solution must be defined as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions for the law of the variables of the solution process to be absolutely continuous with respect to Lebesgue measure.
Resumo:
We explore the determinants of usage of six different types of health care services, using the Medical Expenditure Panel Survey data, years 1996-2000. We apply a number of models for univariate count data, including semiparametric, semi-nonparametric and finite mixture models. We find that the complexity of the model that is required to fit the data well depends upon the way in which the data is pooled across sexes and over time, and upon the characteristics of the usage measure. Pooling across time and sexes is almost always favored, but when more heterogeneous data is pooled it is often the case that a more complex statistical model is required.
Resumo:
This paper aims at assessing the optimal behavior of a firm facing stochastic costs of production. In an imperfectly competitive setting, we evaluate to what extent a firm may decide to locate part of its production in other markets different from which it is actually settled. This decision is taken in a stochastic environment. Portfolio theory is used to derive the optimal solution for the intertemporal profit maximization problem. In such a framework, splitting production between different locations may be optimal when a firm is able to charge different prices in the different local markets.
Resumo:
In this paper we propose the infimum of the Arrow-Pratt index of absolute risk aversion as a measure of global risk aversion of a utility function. We then show that, for any given arbitrary pair of distributions, there exists a threshold level of global risk aversion such that all increasing concave utility functions with at least as much global risk aversion would rank the two distributions in the same way. Furthermore, this threshold level is sharp in the sense that, for any lower level of global risk aversion, we can find two utility functions in this class yielding opposite preference relations for the two distributions.
Resumo:
We review recent likelihood-based approaches to modeling demand for medical care. A semi-nonparametric model along the lines of Cameron and Johansson's Poisson polynomial model, but using a negative binomial baseline model, is introduced. We apply these models, as well a semiparametric Poisson, hurdle semiparametric Poisson, and finite mixtures of negative binomial models to six measures of health care usage taken from the Medical Expenditure Panel survey. We conclude that most of the models lead to statistically similar results, both in terms of information criteria and conditional and unconditional prediction. This suggests that applied researchers may not need to be overly concerned with the choice of which of these models they use to analyze data on health care demand.
Resumo:
In this paper, a new class of generalized backward doubly stochastic differential equations is investigated. This class involves an integral with respect to an adapted continuous increasing process. A probabilistic representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann boundary condition is given.
Resumo:
In this paper we study one-dimensional reflected backward stochastic differential equation when the noise is driven by a Brownian motion and an independent Poisson point process when the solution is forced to stay above a right continuous left-hand limited obstacle. We prove existence and uniqueness of the solution by using a penalization method combined with a monotonic limit theorem.
Resumo:
We show how to calibrate CES production and utility functions when indirect taxation affecting inputs and consumption is present. These calibrated functions can then be used in computable general equilibrium models. Taxation modifies the standard calibration procedures since any taxed good has two associated prices and a choice of reference value units has to be made. We also provide an example of computer code to solve the calibration of CES utilities under two alternate normalizations. To our knowledge, this paper fills a methodological gap in the CGE literature.
Resumo:
In the literature on risk, one generally assume that uncertainty is uniformly distributed over the entire working horizon, when the absolute risk-aversion index is negative and constant. From this perspective, the risk is totally exogenous, and thus independent of endogenous risks. The classic procedure is "myopic" with regard to potential changes in the future behavior of the agent due to inherent random fluctuations of the system. The agent's attitude to risk is rigid. Although often criticized, the most widely used hypothesis for the analysis of economic behavior is risk-neutrality. This borderline case must be envisaged with prudence in a dynamic stochastic context. The traditional measures of risk-aversion are generally too weak for making comparisons between risky situations, given the dynamic �complexity of the environment. This can be highlighted in concrete problems in finance and insurance, context for which the Arrow-Pratt measures (in the small) give ambiguous.
Resumo:
The objective of this paper is to re-evaluate the attitude to effort of a risk-averse decision-maker in an evolving environment. In the classic analysis, the space of efforts is generally discretized. More realistic, this new approach emploies a continuum of effort levels. The presence of multiple possible efforts and performance levels provides a better basis for explaining real economic phenomena. The traditional approach (see, Laffont, J. J. & Tirole, J., 1993, Salanie, B., 1997, Laffont, J.J. and Martimort, D, 2002, among others) does not take into account the potential effect of the system dynamics on the agent's behavior to effort over time. In the context of a Principal-agent relationship, not only the incentives of the Principal can determine the private agent to allocate a good effort, but also the evolution of the dynamic system. The incentives can be ineffective when the environment does not incite the agent to invest a good effort. This explains why, some effici
Resumo:
We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.
Resumo:
We prove global well-posedness in the strong sense for stochastic generalized porous media equations driven by locally square integrable martingales with stationary independent increments.
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.