66 resultados para generalized manifold
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We prove that the fundamental group of any Seifert 3-manifold is conjugacy separable. That is, conjugates may be distinguished infinite quotients or, equivalently, conjugacy classes are closed in the pro-finite topology.
Resumo:
The paper is devoted to the study of a type of differential systems which appear usually in the study of some Hamiltonian systems with 2 degrees of freedom. We prove the existence of infinitely many periodic orbits on each negative energy level. All these periodic orbits pass near the total collision. Finally we apply these results to study the existence of periodic orbits in the charged collinear 3–body problem.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
The proposed game is a natural extension of the Shapley and Shubik Assignment Game to the case where each seller owns a set of different objets instead of only one indivisible object. We propose definitions of pairwise stability and group stability that are adapted to our framework. Existence of both pairwise and group stable outcomes is proved. We study the structure of the group stable set and we finally prove that the set of group stable payoffs forms a complete lattice with one optimal group stable payoff for each side of the market.
Resumo:
We analyze situations in which a group of agents (and possibly a designer) have to reach a decision that will affect all the agents. Examples of such scenarios are the location of a nuclear reactor or the siting of a major sport event. To address the problem of reaching a decision, we propose a one-stage multi-bidding mechanism where agents compete for the project by submitting bids. All Nash equilibria of this mechanism are efficient. Moreover, the payoffs attained in equilibrium by the agents satisfy intuitively appealing lower bounds..
Resumo:
There is a relation between the generalized Property R Conjecture and the Schoenflies Conjecture that suggests a new line of attack on the latter. The new approach gives a quick proof of the genus 2 Schoenflies Conjecture and suffices to prove the genus 3 case, even in the absence of new progress on the generalized Property R Conjecture.
Resumo:
In this paper, a new class of generalized backward doubly stochastic differential equations is investigated. This class involves an integral with respect to an adapted continuous increasing process. A probabilistic representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann boundary condition is given.
Resumo:
We construct generating trees with with one, two, and three labels for some classes of permutations avoiding generalized patterns of length 3 and 4. These trees are built by adding at each level an entry to the right end of the permutation, which allows us to incorporate the adjacency condition about some entries in an occurrence of a generalized pattern. We use these trees to find functional equations for the generating functions enumerating these classes of permutations with respect to different parameters. In several cases we solve them using the kernel method and some ideas of Bousquet-Mélou [2]. We obtain refinements of known enumerative results and find new ones.
Resumo:
There is recent interest in the generalization of classical factor models in which the idiosyncratic factors are assumed to be orthogonal and there are identification restrictions on cross-sectional and time dimensions. In this study, we describe and implement a Bayesian approach to generalized factor models. A flexible framework is developed to determine the variations attributed to common and idiosyncratic factors. We also propose a unique methodology to select the (generalized) factor model that best fits a given set of data. Applying the proposed methodology to the simulated data and the foreign exchange rate data, we provide a comparative analysis between the classical and generalized factor models. We find that when there is a shift from classical to generalized, there are significant changes in the estimates of the structures of the covariance and correlation matrices while there are less dramatic changes in the estimates of the factor loadings and the variation attributed to common factors.
Resumo:
Generalized multiresolution analyses are increasing sequences of subspaces of a Hilbert space H that fail to be multiresolution analyses in the sense of wavelet theory because the core subspace does not have an orthonormal basis generated by a fixed scaling function. Previous authors have studied a multiplicity function m which, loosely speaking, measures the failure of the GMRA to be an MRA. When the Hilbert space H is L2(Rn), the possible multiplicity functions have been characterized by Baggett and Merrill. Here we start with a function m satisfying a consistency condition which is known to be necessary, and build a GMRA in an abstract Hilbert space with multiplicity function m.
Resumo:
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.
Resumo:
We study two cooperative solutions of a market with indivisible goods modeled as a generalized assignment game: Set-wise stability and Core. We first establish that the Set-wise stable set is contained in the Core and it contains the non-empty set of competitive equilibrium payoffs. We then state and prove three limit results for replicated markets. First, the sequence of Cores of replicated markets converges to the set of competitive equilibrium payoffs when the number of replicas tends to infinity. Second, the Set-wise stable set of a two-fold replicated market already coincides with the set of competitive equilibrium payoffs. Third, for any number of replicas there is a market with a Core payoff that is not a competitive equilibrium payoff.
Resumo:
We obtain a new series of integral formulae for symmetric functions of curvature of a distribution of arbitrary codimension (an its orthogonal complement) given on a compact Riemannian manifold, which start from known formula by P.Walczak (1990) and generalize ones for foliations by several authors: Asimov (1978), Brito, Langevin and Rosenberg (1981), Brito and Naveira (2000), Andrzejewski and Walczak (2010), etc. Our integral formulae involve the co-nullity tensor, certain component of the curvature tensor and their products. The formulae also deal with a number of arbitrary functions depending on the scalar invariants of the co-nullity tensor. For foliated manifolds of constant curvature the obtained formulae give us the classical type formulae. For a special choice of functions our formulae reduce to ones with Newton transformations of the co-nullity tensor.
Resumo:
In this paper we consider a representative a priori unstable Hamiltonian system with 2+1/2 degrees of freedom, to which we apply the geometric mechanism for diffusion introduced in the paper Delshams et al., Mem.Amer.Math. Soc. 2006, and generalized in Delshams and Huguet, Nonlinearity 2009, and provide explicit, concrete and easily verifiable conditions for the existence of diffusing orbits. The simplification of the hypotheses allows us to perform explicitly the computations along the proof, which contribute to present in an easily understandable way the geometric mechanism of diffusion. In particular, we fully describe the construction of the scattering map and the combination of two types of dynamics on a normally hyperbolic invariant manifold.
Resumo:
If A is a unital quasidiagonal C*-algebra, we construct a generalized inductive limit BA which is simple, unital and inherits many structural properties from A. If A is the unitization of a non-simple purely infinite algebra (e.g., the cone over a Cuntz algebra), then BA is tracially AF which, among other things, lends support to a conjecture of Toms.