Integral formulae for a Riemannian manifold with a distribution
Contribuinte(s) |
Centre de Recerca Matemàtica |
---|---|
Data(s) |
01/05/2010
|
Resumo |
We obtain a new series of integral formulae for symmetric functions of curvature of a distribution of arbitrary codimension (an its orthogonal complement) given on a compact Riemannian manifold, which start from known formula by P.Walczak (1990) and generalize ones for foliations by several authors: Asimov (1978), Brito, Langevin and Rosenberg (1981), Brito and Naveira (2000), Andrzejewski and Walczak (2010), etc. Our integral formulae involve the co-nullity tensor, certain component of the curvature tensor and their products. The formulae also deal with a number of arbitrary functions depending on the scalar invariants of the co-nullity tensor. For foliated manifolds of constant curvature the obtained formulae give us the classical type formulae. For a special choice of functions our formulae reduce to ones with Newton transformations of the co-nullity tensor. |
Formato |
21 249335 bytes application/pdf |
Identificador | |
Idioma(s) |
eng |
Publicador |
Centre de Recerca Matemàtica |
Relação |
Prepublicacions del Centre de Recerca Matemàtica;946 |
Direitos |
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/) |
Palavras-Chave | #Geometria riemanniana #Foliacions (Matemàtica) #Transformacions (Matemàtica) #514 - Geometria |
Tipo |
info:eu-repo/semantics/preprint |