Integral formulae for a Riemannian manifold with a distribution


Autoria(s): Rovenski, Vladimir
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/05/2010

Resumo

We obtain a new series of integral formulae for symmetric functions of curvature of a distribution of arbitrary codimension (an its orthogonal complement) given on a compact Riemannian manifold, which start from known formula by P.Walczak (1990) and generalize ones for foliations by several authors: Asimov (1978), Brito, Langevin and Rosenberg (1981), Brito and Naveira (2000), Andrzejewski and Walczak (2010), etc. Our integral formulae involve the co-nullity tensor, certain component of the curvature tensor and their products. The formulae also deal with a number of arbitrary functions depending on the scalar invariants of the co-nullity tensor. For foliated manifolds of constant curvature the obtained formulae give us the classical type formulae. For a special choice of functions our formulae reduce to ones with Newton transformations of the co-nullity tensor.

Formato

21

249335 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/81197

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;946

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Geometria riemanniana #Foliacions (Matemàtica) #Transformacions (Matemàtica) #514 - Geometria
Tipo

info:eu-repo/semantics/preprint