10 resultados para Von Neumann regularity
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We study under which conditions the core of a game involved in a convex decomposition of another game turns out to be a stable set of the decomposed game. Some applications and numerical examples, including the remarkable Lucas¿ five player game with a unique stable set different from the core, are reckoning and analyzed.
Resumo:
We study under which conditions the core of a game involved in a convex decomposition of another game turns out to be a stable set of the decomposed game. Some applications and numerical examples, including the remarkable Lucas¿ five player game with a unique stable set different from the core, are reckoning and analyzed.
Resumo:
We prove a double commutant theorem for hereditary subalgebras of a large class of C*-algebras, partially resolving a problem posed by Pedersen[8]. Double commutant theorems originated with von Neumann, whose seminal result evolved into an entire field now called von Neumann algebra theory. Voiculescu proved a C*-algebraic double commutant theorem for separable subalgebras of the Calkin algebra. We prove a similar result for hereditary subalgebras which holds for arbitrary corona C*-algebras. (It is not clear how generally Voiculescu's double commutant theorem holds.)
Resumo:
Let A be a simple, separable C*-algebra of stable rank one. We prove that the Cuntz semigroup of C (T, A) is determined by its Murray-von Neumann semigroup of projections and a certain semigroup of lower semicontinuous functions (with values in the Cuntz semigroup of A). This result has two consequences. First, specializing to the case that A is simple, finite, separable and Z-stable, this yields a description of the Cuntz semigroup of C (T, A) in terms of the Elliott invariant of A. Second, suitably interpreted, it shows that the Elliott functor and the functor defined by the Cuntz semigroup of the tensor product with the algebra of continuous functions on the circle are naturally equivalent.
Resumo:
Let there be a positive (exogenous) probability that, at each date, the human species will disappear.We postulate an Ethical Observer (EO) who maximizes intertemporal welfare under thisuncertainty, with expected-utility preferences. Various social welfare criteria entail alternativevon Neumann- Morgenstern utility functions for the EO: utilitarian, Rawlsian, and an extensionof the latter that corrects for the size of population. Our analysis covers, first, a cake-eating economy(without production), where the utilitarian and Rawlsian recommend the same allocation.Second, a productive economy with education and capital, where it turns out that the recommendationsof the two EOs are in general different. But when the utilitarian program diverges, thenwe prove it is optimal for the extended Rawlsian to ignore the uncertainty concerning the possibledisappearance of the human species in the future. We conclude by discussing the implicationsfor intergenerational welfare maximization in the presence of global warming.
Resumo:
Se estudian en este trabajo algunas magnitudes relacionadas con el enfoque de la reproducción social. Ante todo se hace hincapié en tres ideas fundamentales, las nociones de: a) Salidas menos entradas; b) Salidas dividido por entradas; c) Subsistemas. A continuación se subrayan los obstáculos para la cuantificación directa de estos conceptos, y se repasan las vías sugeridas para sortear las dificultades (por medio de constructos teóricos propuestos por Leontief, von Neumann y Sraffa). Luego se examinan dos nuevos indicadores: la ¿tasaespecífica de excedente¿, que se refiere a los bienes autorreproducibles, y el ¿coeficiente neto de reproducción¿, que se predica de todos los bienes básicos. De pasada se apuntan algunas pistas para establecer indicadores del mismogénero en campos como la economía ecológica y la economía feminista. Por último, se anotan algunas conjeturas relacionadas con la dirección adecuada del cambio técnico
Resumo:
Recently a new Bell inequality has been introduced by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)], which is strongly resistant to noise for maximally entangled states of two d-dimensional quantum systems. We prove that a larger violation, or equivalently a stronger resistance to noise, is found for a nonmaximally entangled state. It is shown that the resistance to noise is not a good measure of nonlocality and we introduce some other possible measures. The nonmaximally entangled state turns out to be more robust also for these alternative measures. From these results it follows that two von Neumann measurements per party may be not optimal for detecting nonlocality. For d=3,4, we point out some connections between this inequality and distillability. Indeed, we demonstrate that any state violating it, with the optimal von Neumann settings, is distillable.
Resumo:
[cat] En aquest treball introduïm la classe de "multi-sided Böhm-Bawerk assignment games", que generalitza la coneguda classe de jocs d’assignació de Böhm-Bawerk bilaterals a situacions amb un nombre arbitrari de sectors. Trobem els extrems del core de qualsevol multi-sided Böhm-Bawerk assignment game a partir d’un joc convex definit en el conjunt de sectors enlloc del conjunt de venedors i compradors. Addicionalment estudiem quan el core d’aquests jocs d’assignació és estable en el sentit de von Neumann-Morgenstern.
Resumo:
[cat] En aquest treball introduïm la classe de "multi-sided Böhm-Bawerk assignment games", que generalitza la coneguda classe de jocs d’assignació de Böhm-Bawerk bilaterals a situacions amb un nombre arbitrari de sectors. Trobem els extrems del core de qualsevol multi-sided Böhm-Bawerk assignment game a partir d’un joc convex definit en el conjunt de sectors enlloc del conjunt de venedors i compradors. Addicionalment estudiem quan el core d’aquests jocs d’assignació és estable en el sentit de von Neumann-Morgenstern.
Resumo:
We present a new a-priori estimate for discrete coagulation fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.