62 resultados para Simplified Navier-Stokes Equation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Informe de investigación elaborado a partir de una estancia en el Laboratorio de Diseño Computacional en Aeroespacial en el Massachusetts Institute of Technology (MIT), Estados Unidos, entre noviembre de 2006 y agosto de 2007. La aerodinámica es una rama de la dinámica de fluidos referida al estudio de los movimientos de los líquidos o gases, cuya meta principal es predecir las fuerzas aerodinámicas en un avión o cualquier tipo de vehículo, incluyendo los automóviles. Las ecuaciones de Navier-Stokes representan un estado dinámico del equilibrio de las fuerzas que actúan en cualquier región dada del fluido. Son uno de los sistemas de ecuaciones más útiles porque describen la física de una gran cantidad de fenómenos como corrientes del océano, flujos alrededor de una superficie de sustentación, etc. En el contexto de una tesis doctoral, se está estudiando un flujo viscoso e incompresible, solucionando las ecuaciones de Navier- Stokes incompresibles de una manera eficiente. Durante la estancia en el MIT, se ha utilizado un método de Galerkin discontinuo para solucionar las ecuaciones de Navier-Stokes incompresibles usando, o bien un parámetro de penalti para asegurar la continuidad de los flujos entre elementos, o bien un método de Galerkin discontinuo compacto. Ambos métodos han dado buenos resultados y varios ejemplos numéricos se han simulado para validar el buen comportamiento de los métodos desarrollados. También se han estudiado elementos particulares, los elementos de Raviart y Thomas, que se podrían utilizar en una formulación mixta para obtener un algoritmo eficiente para solucionar problemas numéricos complejos.
Resumo:
We study the dynamics of shear-band formation and evolution using a simple rheological model. The description couples the local structure and viscosity to the applied shear stress. We consider in detail the Couette geometry, where the model is solved iteratively with the Navier-Stokes equation to obtain the time evolution of the local velocity and viscosity fields. It is found that the underlying reason for dynamic effects is the nonhomogeneous shear distribution, which is amplified due to a positive feedback between the flow field and the viscosity response of the shear thinning fluid. This offers a simple explanation for the recent observations of transient shear banding in time-dependent fluids. Extensions to more complicated rheological systems are considered.
Resumo:
In this paper a model is developed to describe the three dimensional contact melting process of a cuboid on a heated surface. The mathematical description involves two heat equations (one in the solid and one in the melt), the Navier-Stokes equations for the flow in the melt, a Stefan condition at the phase change interface and a force balance between the weight of the solid and the countering pressure in the melt. In the solid an optimised heat balance integral method is used to approximate the temperature. In the liquid the small aspect ratio allows the Navier-Stokes and heat equations to be simplified considerably so that the liquid pressure may be determined using an igenfunction expansion and finally the problem is reduced to solving three first order ordinary differential equations. Results are presented showing the evolution of the melting process. Further reductions to the system are made to provide simple guidelines concerning the process. Comparison of the solutions with experimental data on the melting of n-octadecane shows excellent agreement.
Resumo:
Proyecto de investigación realizado a partir de una estancia en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC), Argentina, entre febrero y abril del 2007. La simulación numérica de problemas de mezclas mediante el Particle Finite Element Method (PFEM) es el marco de estudio de una futura tesis doctoral. Éste es un método desarrollado conjuntamente por el CIMEC y el Centre Internacional de Mètodos Numèrics en l'Enginyeria (CIMNE-UPC), basado en la resolución de las ecuaciones de Navier-Stokes en formulación Lagrangiana. El mallador ha sido implementado y desarrollado por Dr. Nestor Calvo, investigador del CIMEC. El desarrollo del módulo de cálculo corresponde al trabajo de tesis de la beneficiaria. La correcta interacción entre ambas partes es fundamental para obtener resultados válidos. En esta memoria se explican los principales aspectos del mallador que fueron modificados (criterios de refinamiento geométrico) y los cambios introducidos en el módulo de cálculo (librería PETSc, algoritmo predictor-corrector) durante la estancia en el CIMEC. Por último, se muestran los resultados obtenidos en un problema de dos fluidos inmiscibles con transferencia de calor.
Resumo:
Using an interpolant form for the gradient of a function of position, we write an integral version of the conservation equations for a fluid. In the appropriate limit, these become the usual conservation laws of mass, momentum, and energy. We also discuss the special cases of the Navier-Stokes equations for viscous flow and the Fourier law for thermal conduction in the presence of hydrodynamic fluctuations. By means of a discretization procedure, we show how the integral equations can give rise to the so-called particle dynamics of smoothed particle hydrodynamics and dissipative particle dynamics.
Resumo:
We report a Lattice-Boltzmann scheme that accounts for adsorption and desorption in the calculation of mesoscale dynamical properties of tracers in media of arbitrary complexity. Lattice Boltzmann simulations made it possible to solve numerically the coupled Navier-Stokes equations of fluid dynamics and Nernst-Planck equations of electrokinetics in complex, heterogeneous media. With the moment propagation scheme, it became possible to extract the effective diffusion and dispersion coefficients of tracers, or solutes, of any charge, e.g., in porous media. Nevertheless, the dynamical properties of tracers depend on the tracer-surface affinity, which is not purely electrostatic and also includes a species-specific contribution. In order to capture this important feature, we introduce specific adsorption and desorption processes in a lattice Boltzmann scheme through a modified moment propagation algorithm, in which tracers may adsorb and desorb from surfaces through kinetic reaction rates. The method is validated on exact results for pure diffusion and diffusion-advection in Poiseuille flows in a simple geometry. We finally illustrate the importance of taking such processes into account in the time-dependent diffusion coefficient in a more complex porous medium.
Resumo:
La simulació de la realitat és un fenomen que va sorgir fa uns anys per tal de predir esdeveniments sense haver de malbaratar recursos. El problema inicial de la simulació va ser la necessitat de simplificar la realitat a causa de la manca de capacitat dels ordinadors de l’època. Amb aquest projecte volem ajudar, per exemple, a estudis científics sobre la difusió de la contaminació en grans nuclis a causa de l’efecte del vent, càlculs de trajectòries amb forces externes degudes al vent, o incorporar en el món de la multimèdia efectes realistes de vent. El principal objectiu d’aquest projecte és desenvolupar un sistema que permeti realitzar simulacions realistes de vent per un paisatge 2D, i estudiar com el vent és veu afectat per la geometria de l’escena. Un punt important, és que tot ha de ser en temps real. Per aconseguir-ho, utilitzarem tècniques basades en el mètode de Lattice-Boltzmann, el qual consisteix en una xarxa regular que representa el fluid en posicions discretes, i estudiar com flueix. Escollint els paràmetres correctes de la simulació, es pot demostrar que aquest mètode convergeix a les equacions continues de Navier-Stokes, les qual són les més importants per descriure el comportament macroscòpic d’un fluid. Per accelerar tots els càlculs, utilitzarem la capacitat i la potencia de les targes gràfiques, ajustarem l’algorisme per poder-lo utilitzar en paral•lel, tot tenint en compte les restriccions de les GPUs. També haurem de generar un sistema per poder llegir les escenes 2D sobre les que realitzarem la simulació. Finalment, haurem de “pintar” el vent per tal de poder visualitzar el resultat de la simulació
Resumo:
Interaction effects are usually modeled by means of moderated regression analysis. Structural equation models with non-linear constraints make it possible to estimate interaction effects while correcting formeasurement error. From the various specifications, Jöreskog and Yang's(1996, 1998), likely the most parsimonious, has been chosen and further simplified. Up to now, only direct effects have been specified, thus wasting much of the capability of the structural equation approach. This paper presents and discusses an extension of Jöreskog and Yang's specification that can handle direct, indirect and interaction effects simultaneously. The model is illustrated by a study of the effects of an interactive style of use of budgets on both company innovation and performance
Resumo:
We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.
Resumo:
In this paper we study one-dimensional reflected backward stochastic differential equation when the noise is driven by a Brownian motion and an independent Poisson point process when the solution is forced to stay above a right continuous left-hand limited obstacle. We prove existence and uniqueness of the solution by using a penalization method combined with a monotonic limit theorem.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We consider a delay differential equation with two delays. The Hopf bifurcation of this equation is investigated together with the stability of the bifurcated periodic solution, its period and the bifurcation direction. Finally, three applications are given.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
"Vegeu el resum a l’inici del document del fitxer adjunt."
Selection bias and unobservable heterogeneity applied at the wage equation of European married women
Resumo:
This paper utilizes a panel data sample selection model to correct the selection in the analysis of longitudinal labor market data for married women in European countries. We estimate the female wage equation in a framework of unbalanced panel data models with sample selection. The wage equations of females have several potential sources of.