Discretized integral hydrodynamics
Contribuinte(s) |
Universitat de Barcelona |
---|---|
Data(s) |
26/07/2011
|
Resumo |
Using an interpolant form for the gradient of a function of position, we write an integral version of the conservation equations for a fluid. In the appropriate limit, these become the usual conservation laws of mass, momentum, and energy. We also discuss the special cases of the Navier-Stokes equations for viscous flow and the Fourier law for thermal conduction in the presence of hydrodynamic fluctuations. By means of a discretization procedure, we show how the integral equations can give rise to the so-called particle dynamics of smoothed particle hydrodynamics and dissipative particle dynamics. |
Identificador | |
Idioma(s) |
eng |
Publicador |
The American Physical Society |
Direitos |
(c) American Physical Society, 1998 |
Palavras-Chave | #Teoria quàntica #Teoria de camps (Física) #Relativitat especial (Física) #Física matemàtica #Química física #Quantum theory #Field theory (Physics) #Special relativity (Physics) #Physical and theoretical chemistry #Mathematical physics |
Tipo |
info:eu-repo/semantics/article |