Discretized integral hydrodynamics


Autoria(s): Romero-Rochín, V.; Rubí Capaceti, José Miguel
Contribuinte(s)

Universitat de Barcelona

Data(s)

26/07/2011

Resumo

Using an interpolant form for the gradient of a function of position, we write an integral version of the conservation equations for a fluid. In the appropriate limit, these become the usual conservation laws of mass, momentum, and energy. We also discuss the special cases of the Navier-Stokes equations for viscous flow and the Fourier law for thermal conduction in the presence of hydrodynamic fluctuations. By means of a discretization procedure, we show how the integral equations can give rise to the so-called particle dynamics of smoothed particle hydrodynamics and dissipative particle dynamics.

Identificador

http://hdl.handle.net/2445/18792

Idioma(s)

eng

Publicador

The American Physical Society

Direitos

(c) American Physical Society, 1998

Palavras-Chave #Teoria quàntica #Teoria de camps (Física) #Relativitat especial (Física) #Física matemàtica #Química física #Quantum theory #Field theory (Physics) #Special relativity (Physics) #Physical and theoretical chemistry #Mathematical physics
Tipo

info:eu-repo/semantics/article