159 resultados para Oscillatory Singular Integrals
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We show that L2-bounded singular integrals in metric spaces with respect to general measures and kernels converge weakly. This implies a kind of average convergence almost everywhere. For measures with zero density we prove the almost everywhere existence of principal values.
Resumo:
In this paper we prove T1 type necessary and sufficient conditions for the boundedness on inhomogeneous Lipschitz spaces of fractional integrals and singular integrals defined on a measure metric space whose measure satisfies a n-dimensional growth. We also show that hypersingular integrals are bounded on these spaces.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We characterize the approach regions so that the non-tangential maximal function is of weak-type on potential spaces, for which we use a simple argument involving Carleson measure estimates.
Resumo:
A l'estadística de processos estocàstics i camps aleatoris, una funció de moments o un cumulant d'un estimador de la funció de correlació o de la densitat espectral sovint pot contenir una integral amb un producte cíclic de nuclis. En aquest treball es defineix i s'investiga aquesta classe d'integrals i es demostra la desigualtat de Young-Hölder que permet estudiar el comportament asimptòtic de les esmentades integrals en la situació quan els nuclis depenen d'un pàràmetre. Es considera una aplicació al problema d'estimació de la funció de resposta en un sistema de Volterra.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We present Shelah’s famous theorem in a version for modules, together with a self-contained proof and some examples. This exposition is based on lectures given at CRM in October 2006.
Resumo:
We first recall the construction of the Chow motive modelling intersection cohomology of a proper surface X and study its fundamental properties. Using Voevodsky's category of effective geometrical motives, we then study the motive of the exceptional divisor D in a non-singular blow-up of X. If all geometric irreducible components of D are of genus zero, then Voevodsky's formalism allows us to construct certain one-extensions of Chow motives, as canonical subquotients of the motive with compact support of the smooth part of X. Specializing to Hilbert-Blumenthal surfaces, we recover a motivic interpretation of a recent construction of A. Caspar.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
New sufficient conditions for representation of a function via the absolutely convergent Fourier integral are obtained in the paper. In the main result, Theorem 1.1, this is controlled by the behavior near infinity of both the function and its derivative. This result is extended to any dimension d &= 2.