31 resultados para Nonlinear constrained optimization problems

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the use of probabilistic or randomized algorithms for solving combinatorial optimization problems. Our approach employs non-uniform probability distributions to add a biased random behavior to classical heuristics so a large set of alternative good solutions can be quickly obtained in a natural way and without complex conguration processes. This procedure is especially useful in problems where properties such as non-smoothness or non-convexity lead to a highly irregular solution space, for which the traditional optimization methods, both of exact and approximate nature, may fail to reach their full potential. The results obtained are promising enough to suggest that randomizing classical heuristics is a powerful method that can be successfully applied in a variety of cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Black-box optimization problems (BBOP) are de ned as those optimization problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program). This paper is focussed on BBOPs that arise in the eld of insurance, and more speci cally in reinsurance problems. In this area, the complexity of the models and assumptions considered to de ne the reinsurance rules and conditions produces hard black-box optimization problems, that must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in BBOP, so new computational paradigms must be applied to solve these problems. In this paper we show the performance of two evolutionary-based techniques (Evolutionary Programming and Particle Swarm Optimization). We provide an analysis in three BBOP in reinsurance, where the evolutionary-based approaches exhibit an excellent behaviour, nding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many engineering problems that can be formulatedas constrained optimization problems result in solutionsgiven by a waterfilling structure; the classical example is thecapacity-achieving solution for a frequency-selective channel.For simple waterfilling solutions with a single waterlevel and asingle constraint (typically, a power constraint), some algorithmshave been proposed in the literature to compute the solutionsnumerically. However, some other optimization problems result insignificantly more complicated waterfilling solutions that includemultiple waterlevels and multiple constraints. For such cases, itmay still be possible to obtain practical algorithms to evaluate thesolutions numerically but only after a painstaking inspection ofthe specific waterfilling structure. In addition, a unified view ofthe different types of waterfilling solutions and the correspondingpractical algorithms is missing.The purpose of this paper is twofold. On the one hand, itoverviews the waterfilling results existing in the literature from aunified viewpoint. On the other hand, it bridges the gap betweena wide family of waterfilling solutions and their efficient implementationin practice; to be more precise, it provides a practicalalgorithm to evaluate numerically a general waterfilling solution,which includes the currently existing waterfilling solutions andothers that may possibly appear in future problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problems arising in commercial distribution are complex and involve several players and decision levels. One important decision is relatedwith the design of the routes to distribute the products, in an efficient and inexpensive way.This article deals with a complex vehicle routing problem that can beseen as a new extension of the basic vehicle routing problem. The proposed model is a multi-objective combinatorial optimization problemthat considers three objectives and multiple periods, which models in a closer way the real distribution problems. The first objective is costminimization, the second is balancing work levels and the third is amarketing objective. An application of the model on a small example, with5 clients and 3 days, is presented. The results of the model show the complexity of solving multi-objective combinatorial optimization problems and the contradiction between the several distribution management objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Generalized Assignment Problem consists in assigning a setof tasks to a set of agents with minimum cost. Each agent hasa limited amount of a single resource and each task must beassigned to one and only one agent, requiring a certain amountof the resource of the agent. We present new metaheuristics forthe generalized assignment problem based on hybrid approaches.One metaheuristic is a MAX-MIN Ant System (MMAS), an improvedversion of the Ant System, which was recently proposed byStutzle and Hoos to combinatorial optimization problems, and itcan be seen has an adaptive sampling algorithm that takes inconsideration the experience gathered in earlier iterations ofthe algorithm. Moreover, the latter heuristic is combined withlocal search and tabu search heuristics to improve the search.A greedy randomized adaptive search heuristic (GRASP) is alsoproposed. Several neighborhoods are studied, including one basedon ejection chains that produces good moves withoutincreasing the computational effort. We present computationalresults of the comparative performance, followed by concludingremarks and ideas on future research in generalized assignmentrelated problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desenvolupament dels models matemàtics necessaris per a controlar de forma òptima la microxarxa existent als laboratoris del Institut de Recerca en Energia de Catalunya. Els algoritmes s'implementaran per tal de simular el comportament i posteriorment es programaran directament sobre els elements de la microxarxa per verificar el seu correcte funcionament.. Desenvolupament dels models matemàtics necessaris per a controlar de forma òptima la microxarxa existent als laboratoris del Institut de Recerca en Energia de Catalunya. Els algoritmes s'implementaran per tal de simular el comportament i posteriorment es programaran directament sobre els elements de la microxarxa per verificar el seu correcte funcionament.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider nonlinear elliptic problems involving a nonlocal operator: the square root of the Laplacian in a bounded domain with zero Dirichlet boundary conditions. For positive solutions to problems with power nonlinearities, we establish existence and regularity results, as well as a priori estimates of Gidas-Spruck type. In addition, among other results, we prove a symmetry theorem of Gidas-Ni-Nirenberg type.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we are proposing a methodology to determine the most efficient and least costly way of crew pairing optimization. We are developing a methodology based on algorithm optimization on Eclipse opensource IDE using the Java programming language to solve the crew scheduling problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reinsurance is one of the tools that an insurer can use to mitigate the underwriting risk and then to control its solvency. In this paper, we focus on the proportional reinsurance arrangements and we examine several optimization and decision problems of the insurer with respect to the reinsurance strategy. To this end, we use as decision tools not only the probability of ruin but also the random variable deficit at ruin if ruin occurs. The discounted penalty function (Gerber & Shiu, 1998) is employed to calculate as particular cases the probability of ruin and the moments and the distribution function of the deficit at ruin if ruin occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a natural way of reaching an agreement between two prominent proposals in a bankruptcy problem. Particularly, using the fact that such problems can be faced from two different points of views, awards and losses, we justify the average of any pair of dual bankruptcy rules through the definition a double recursive process. Finally, by considering three posible sets of equity principles that a particular society may agree on, we retrieve the average of old and well known bankruptcy rules, the Constrained Equal Awards and the Constrained Equal Losses rules, Piniles’ rule and its dual rule, and the Constrained Egalitarian rule and its dual rule. Keywords: Bankruptcy problems, Midpoint, Bounds, Duality, Recursivity. JEL classification: C71, D63, D71.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The commitment among agents has always been a difficult task, especially when they have to decide how to distribute the available amount of a scarce resource among all. On the one hand, there are a multiplicity of possible ways for assigning the available amount; and, on the other hand, each agent is going to propose that distribution which provides her the highest possible award. In this paper, with the purpose of making this agreement easier, firstly we use two different sets of basic properties, called Commonly Accepted Equity Principles, to delimit what agents can propose as reasonable allocations. Secondly, we extend the results obtained by Chun (1989) and Herrero (2003), obtaining new characterizations of old and well known bankruptcy rules. Finally, using the fact that bankruptcy problems can be analyzed from awards and losses, we define a mechanism which provides a new justification of the convex combinations of bankruptcy rules. Keywords: Bankruptcy problems, Unanimous Concessions procedure, Diminishing Claims mechanism, Piniles’ rule, Constrained Egalitarian rule. JEL classification: C71, D63, D71.