36 resultados para Least-squares support vector machine

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'objectiu d'aquest projecte ha estat el desenvolupament d'algorismes biològicament inspirats per a l'olfacció artificial. Per a assolir-lo ens hem basat en el paradigma de les màquines amb suport vectorial. Hem construit algoritmes que imitaven els processos computacionals dels diferents sistemes que formen el sistema olfactiu dels insectes, especialment de la llagosta Schistocerca gregaria. Ens hem centrat en el lòbuls de les antenes, i en el cos fungiforme. El primer està considerat un dispositiu de codificació de les olors, que a partir de la resposta temporal dels receptors olfactius a les antenes genera un patró d'activació espaial i temporal. Quant al cos fungiforme es considera que la seva funció és la d'una memòria per als olors, així com un centre per a la integració multi-sensorial. El primer pas ha estat la construcció de models detallats dels dos sistemes. A continuació, hem utilitzat aquests models per a processar diferents tipus de senyals amb l'objectiu de abstraure els principis computacionals subjacents. Finalment, hem avaluat les capacitats d'aquests models abstractes, i els hem utilitzat per al processat de dades provinents de sensors de gasos. Els resultats mostren que el models abstractes tenen millor comportament front el soroll i més capacitat d'emmagatzematge de records que altres models més clàssics, com ara les memòries associatives de Hopfield o fins i tot en determinades circumstàncies que les mateixes Support Vector Machines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper fills a gap in the existing literature on least squareslearning in linear rational expectations models by studying a setup inwhich agents learn by fitting ARMA models to a subset of the statevariables. This is a natural specification in models with privateinformation because in the presence of hidden state variables, agentshave an incentive to condition forecasts on the infinite past recordsof observables. We study a particular setting in which it sufficesfor agents to fit a first order ARMA process, which preserves thetractability of a finite dimensional parameterization, while permittingconditioning on the infinite past record. We describe how previousresults (Marcet and Sargent [1989a, 1989b] can be adapted to handlethe convergence of estimators of an ARMA process in our self--referentialenvironment. We also study ``rates'' of convergence analytically and viacomputer simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the robustness of Least-Squares Monte Carlo, a techniquerecently proposed by Longstaff and Schwartz (2001) for pricing Americanoptions. This method is based on least-squares regressions in which theexplanatory variables are certain polynomial functions. We analyze theimpact of different basis functions on option prices. Numerical resultsfor American put options provide evidence that a) this approach is veryrobust to the choice of different alternative polynomials and b) few basisfunctions are required. However, these conclusions are not reached whenanalyzing more complex derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study focuses on single-case data analysis and specifically on two procedures for quantifying differences between baseline and treatment measurements The first technique tested is based on generalized least squares regression analysis and is compared to a proposed non-regression technique, which allows obtaining similar information. The comparison is carried out in the context of generated data representing a variety of patterns (i.e., independent measurements, different serial dependence underlying processes, constant or phase-specific autocorrelation and data variability, different types of trend, and slope and level change). The results suggest that the two techniques perform adequately for a wide range of conditions and researchers can use both of them with certain guarantees. The regression-based procedure offers more efficient estimates, whereas the proposed non-regression procedure is more sensitive to intervention effects. Considering current and previous findings, some tentative recommendations are offered to applied researchers in order to help choosing among the plurality of single-case data analysis techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used, and Principal Component Analysis (PCA) is applied in order to study which is the best number of components for the classification task, implemented by means of a Support Vector Machine (SVM) System. Obtained results are satisfactory, and compared with [4] our system improves the recognition success, diminishing the variance at the same time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El principal objectiu d’aquest projecte és aconseguir classificar diferents vídeos d’esports segons la seva categoria. Els cercadors de text creen un vocabulari segons el significat de les diferents paraules per tal de poder identificar un document. En aquest projecte es va fer el mateix però mitjançant paraules visuals. Per exemple, es van intentar englobar com a una única paraula les diferents rodes que apareixien en els cotxes de rally. A partir de la freqüència amb què apareixien les paraules dels diferents grups dins d’una imatge vàrem crear histogrames de vocabulari que ens permetien tenir una descripció de la imatge. Per classificar un vídeo es van utilitzar els histogrames que descrivien els seus fotogrames. Com que cada histograma es podia considerar un vector de valors enters vàrem optar per utilitzar una màquina classificadora de vectors: una Support vector machine o SVM

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase encoded nano structures such as Quick Response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase encoded QR codes. The system is illuminated using polarized light and the QR code is encoded using a phase-only random mask. Using classification algorithms it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase encoded QR codes using polarimetric signatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The automatic diagnostic discrimination is an application of artificial intelligence techniques that can solve clinical cases based on imaging. Diffuse liver diseases are diseases of wide prominence in the population and insidious course, yet early in its progression. Early and effective diagnosis is necessary because many of these diseases progress to cirrhosis and liver cancer. The usual technique of choice for accurate diagnosis is liver biopsy, an invasive and not without incompatibilities one. It is proposed in this project an alternative non-invasive and free of contraindications method based on liver ultrasonography. The images are digitized and then analyzed using statistical techniques and analysis of texture. The results are validated from the pathology report. Finally, we apply artificial intelligence techniques as Fuzzy k-Means or Support Vector Machines and compare its significance to the analysis Statistics and the report of the clinician. The results show that this technique is significantly valid and a promising alternative as a noninvasive diagnostic chronic liver disease from diffuse involvement. Artificial Intelligence classifying techniques significantly improve the diagnosing discrimination compared to other statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this present work, we are proposing a characteristics reduction system for a facial biometric identification system, using transformed domains such as discrete cosine transformed (DCT) and discrete wavelets transformed (DWT) as parameterization; and Support Vector Machines (SVM) and Neural Network (NN) as classifiers. The size reduction has been done with Principal Component Analysis (PCA) and with Independent Component Analysis (ICA). This system presents a similar success results for both DWT-SVM system and DWT-PCA-SVM system, about 98%. The computational load is improved on training mode due to the decreasing of input’s size and less complexity of the classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The parameterized expectations algorithm (PEA) involves a long simulation and a nonlinear least squares (NLS) fit, both embedded in a loop. Both steps are natural candidates for parallelization. This note shows that parallelization can lead to important speedups for the PEA. I provide example code for a simple model that can serve as a template for parallelization of more interesting models, as well as a download link for an image of a bootable CD that allows creation of a cluster and execution of the example code in minutes, with no need to install any software.