Improving a leaves automatic recognition process using PCA


Autoria(s): Solé-Casals, Jordi; Travieso, Carlos M.; Alonso, Jesús B.; Ferrer, Miguel A.
Contribuinte(s)

Universitat de Vic. Escola Politècnica Superior

Universitat de Vic. Grup de Recerca en Tecnologies Digitals

International Workshop on Practical Applications of Computational Biology and Bioinformatics (Iwpacbb 2008)

Data(s)

2009

Resumo

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used, and Principal Component Analysis (PCA) is applied in order to study which is the best number of components for the classification task, implemented by means of a Support Vector Machine (SVM) System. Obtained results are satisfactory, and compared with [4] our system improves the recognition success, diminishing the variance at the same time.

Formato

10 p.

Identificador

http://hdl.handle.net/10854/2094

Idioma(s)

eng

Publicador

Springer

Direitos

(c) Springer, 2009

Tots els drets reservats

Palavras-Chave #Percepció de les formes
Tipo

info:eu-repo/semantics/conferenceObject