On the robustness of least-squares Monte Carlo (LSM) for pricing American derivatives


Autoria(s): Moreno, Manuel; Navas, Javier R.
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

This paper analyses the robustness of Least-Squares Monte Carlo, a techniquerecently proposed by Longstaff and Schwartz (2001) for pricing Americanoptions. This method is based on least-squares regressions in which theexplanatory variables are certain polynomial functions. We analyze theimpact of different basis functions on option prices. Numerical resultsfor American put options provide evidence that a) this approach is veryrobust to the choice of different alternative polynomials and b) few basisfunctions are required. However, these conclusions are not reached whenanalyzing more complex derivatives.

Identificador

http://hdl.handle.net/10230/951

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Finance and Accounting #least-squares monte carlo #option pricing #american options
Tipo

info:eu-repo/semantics/workingPaper