Reducción del vector de características de reconocimiento facial
Contribuinte(s) |
Universitat de Vic. Escola Politècnica Superior Universitat de Vic. Grup de Recerca en Tecnologies Digitals Simposium Nacional de la Unión Científica Internacional de Radio (23è : 2008: Madrid) URSI 2008 |
---|---|
Data(s) |
2008
|
Resumo |
In this present work, we are proposing a characteristics reduction system for a facial biometric identification system, using transformed domains such as discrete cosine transformed (DCT) and discrete wavelets transformed (DWT) as parameterization; and Support Vector Machines (SVM) and Neural Network (NN) as classifiers. The size reduction has been done with Principal Component Analysis (PCA) and with Independent Component Analysis (ICA). This system presents a similar success results for both DWT-SVM system and DWT-PCA-SVM system, about 98%. The computational load is improved on training mode due to the decreasing of input’s size and less complexity of the classifier. |
Formato |
4 p. |
Identificador | |
Idioma(s) |
spa |
Direitos |
Aquest document està subjecte a una llicència Creative Commons: |
Palavras-Chave | #Reconeixement facial (Informàtica) |
Tipo |
info:eu-repo/semantics/conferenceObject |