154 resultados para Semiconductors nanocomposite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon thin-films were obtained by catalytic chemical vapour deposition at low substrate temperatures (150°C) and high deposition rates (10 Å/s). These films, with crystalline fractions over 90%, were incorporated as the active layers of bottom-gate thin-film transistors. The initial field-effect mobilities of these devices were over 0.5 cm 2/V s and the threshold voltages lower than 4 V. In this work, we report on the enhanced stability of these devices under prolonged times of gate bias stress compared to amorphous silicon thin-film transistors. Hence, they are promising candidates to be considered in the future for applications such as flat-panel displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrical and electroluminescence (EL) properties at room and high temperatures of oxide/ nitride/oxide (ONO)-based light emitting capacitors are studied. The ONO multidielectric layer is enriched with silicon by means of ion implantation. The exceeding silicon distribution follows a Gaussian profile with a maximum of 19%, centered close to the lower oxide/nitride interface. The electrical measurements performed at room and high temperatures allowed to unambiguously identify variable range hopping (VRH) as the dominant electrical conduction mechanism at low voltages, whereas at moderate and high voltages, a hybrid conduction formed by means of variable range hopping and space charge-limited current enhanced by Poole-Frenkel effect predominates. The EL spectra at different temperatures are also recorded, and the correlation between charge transport mechanisms and EL properties is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural and optical properties of three different kinds of GaAs nanowires with 100% zinc-blende structure and with an average of 30% and 70% wurtzite are presented. A variety of shorter and longer segments of zinc-blende or wurtzite crystal phases are observed by transmission electron microscopy in the nanowires. Sharp photoluminescence lines are observed with emission energies tuned from 1.515 eV down to 1.43 eV when the percentage of wurtzite is increased. The downward shift of the emission peaks can be understood by carrier confinement at the interfaces, in quantum wells and in random short period superlattices existent in these nanowires, assuming a staggered band offset between wurtzite and zinc-blende GaAs. The latter is confirmed also by time-resolved measurements. The extremely local nature of these optical transitions is evidenced also by cathodoluminescence measurements. Raman spectroscopy on single wires shows different strain conditions, depending on the wurtzite content which affects also the band alignments. Finally, the occurrence of the two crystallographic phases is discussed in thermodynamic terms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous silicon n-i-p solar cells have been fabricated entirely by Hot-Wire Chemical Vapour Deposition (HW-CVD) at low process temperature < 150 °C. A textured-Ag/ZnO back reflector deposited on Corning 1737F by rf magnetron sputtering was used as the substrate. Doped layers with very good conductivity and a very less defective intrinsic a-Si:H layer were used for the cell fabrication. A double n-layer (μc-Si:H/a-Si:H) and μc-Si:H p-layer were used for the cell. In this paper, we report the characterization of these layers and the integration of these layers in a solar cell fabricated at low temperature. An initial efficiency of 4.62% has been achieved for the n-i-p cell deposited at temperatures below 150 °C over glass/Ag/ZnO textured back reflector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polysilicon thin film transistors (TFT) are of great interest in the field of large area microelectronics, especially because of their application as active elements in flat panel displays. Different deposition techniques are in tough competition with the objective to obtain device-quality polysilicon thin films at low temperature. In this paper we present the preliminary results obtained with the fabrication of TFT deposited by hot-wire chemical vapor deposition (HWCVD). Some results concerned with the structural characterization of the material and electrical performance of the device are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogenated microcrystalline silicon films obtained at low temperature (150-280°C) by hot wire chemical vapour deposition at two different process pressures were measured by Raman spectroscopy, X-ray diffraction (XRD) spectroscopy and photothermal deflection spectroscopy (PDS). A crystalline fraction >90% with a subgap optical absortion 10 cm -1 at 0.8 eV were obtained in films deposited at growth rates >0.8 nm/s. These films were incorporated in n-channel thin film transistors and their electrical properties were measured. The saturation mobility was 0.72 ± 0.05 cm 2/ V s and the threshold voltage around 0.2 eV. The dependence of their conductance activation energies on gate voltages were related to the properties of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-type as well P-type top-gate microcrystalline silicon thin film transistors (TFTs) are fabricated on glass substrates at a maximum temperature of 200 °C. The active layer is an undoped μc-Si film, 200 nm thick, deposited by Hot-Wire Chemical Vapor. The drain and source regions are highly phosphorus (N-type TFTs) or boron (P-type TFTs)-doped μc-films deposited by HW-CVD. The gate insulator is a silicon dioxide film deposited by RF sputtering. Al-SiO 2-N type c-Si structures using this insulator present low flat-band voltage,-0.2 V, and low density of states at the interface D it=6.4×10 10 eV -1 cm -2. High field effect mobility, 25 cm 2/V s for electrons and 1.1 cm 2/V s for holes, is obtained. These values are very high, particularly the hole mobility that was never reached previously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bi1.5Zn1Nb1.5O7 (BZN) epitaxial thin films were grown by pulsed laser deposition on Al2O3 with a double ZnO buffer layer through domain matching epitaxy (DME) mechanism. The pole figure analysis and reciprocal space mapping revealed the single crystalline nature of the thin film. The pole figure analysis also shows a 60º twinning for the (222) oriented crystals. Sharp intense spots in the SAED pattern also indicate the high crystalline nature of BZN thin film. The Fourier filtered HRTEM images of the BZN-ZnO interface confirms the domain matched epitaxy of BZN with ZnO buffer. An electric field dependent dielectric tunability of 68% was obtained for the BZN thin films with inter digital capacitors patterned over the film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se presenta un estudio químico y estructural de las capas metálicas de Pt y TaSix utilizadas como puerta catalítica en sensores de gas de alta temperatura basados en dispositivos MOS de SiC. Para ello se han depositado capas de diferentes espesores sobre substratos de Si. Los resultados muestran que con la reducción del espesor de Pt y con un recocido se consigue aumentar la rugosidad de las capas de puerta, lo que debería aumentar la sensibilidad y la velocidad de respuesta de los dispositivos que las incorporasen. Otro efecto del recocido es la transformación química del material de la puerta que, para capas delgadas de Pt con TaSix, produce la transformación total Pt en Pt2Ta, lo que podría afectar a las características catalíticas de la puerta. Los primeros resultados eléctricos indican que, a pesar de que las capas de Pt empleadas son gruesas y compactas, los diodos MOS túnel de SiC son sensibles a los gases CO y NO2, aunque presentan una velocidad de respuesta bastante lenta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The silicon photomultiplier (SiPM) is a novel detector technology that has undergone a fast development in the last few years, owing to its single-photon resolution and ultra-fast response time. However, the typical high dark count rates of the sensor may prevent the detection of low intensity radiation fluxes. In this article, the time-gated operation with short active periods in the nanosecond range is proposed as a solution to reduce the number of cells fired due to noise and thus increase the dynamic range. The technique is aimed at application fields that function under a trigger command, such as gated fluorescence lifetime imaging microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the structural properties of a-Si:H/a-Si1-xCx: H multilayers deposited by glow-discharge decomposition of SiH4 and SiH4 and CH4 mixtures. The main feature of the rf plasma reactor is an automated substrate holder. The plasma stabilization time and its influence on the multilayer obtained is discussed. A series of a-Si:H/a-Si1-xCx: H multilayers has been deposited and characterized by secondary ion mass spectrometry (SIMS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). No asymmetry between the two types of interface has been observed. The results show that the multilayers present a very good periodicity and low roughness. The difficulty of determining the abruptness of the multilayer at the nanometer scale is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on a field-effect light emitting device based on silicon nanocrystals in silicon oxide deposited by plasma-enhanced chemical vapor deposition. The device shows high power efficiency and long lifetime. The power efficiency is enhanced up to 0.1 %25 by the presence of a silicon nitride control layer. The leakage current reduction induced by this nitride buffer effectively increases the power efficiency two orders of magnitude with regard to similarly processed devices with solely oxide. In addition, the nitride cools down the electrons that reach the polycrystalline silicon gate lowering the formation of defects, which significantly reduces the device degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En los últimos años el servicio de banda ancha móvil ha tenido una fuerte expansión en España, hasta alcanzar una penetración de más del 70 por 100 de la población a principios de 2014. Este crecimiento puede explicarse por las prestaciones que ofrecen las tecnologías de tercera y cuarta generación en los terminales móviles actuales, y por las continuas reducciones de precios del servicio. A pesar de ello, los precios en España son todavía más altos que la media europea. Este artículo explica el proceso de innovación tecnológica que ha permitido el surgimiento de la banda ancha móvil, y su lanzamiento en España. Se examinan las nuevas estrategias comerciales que utilizan los operadores, como el empaquetamiento de servicios y los planes convergentes que incluyen servicios fijos y móviles. Nuestro análisis destaca que la presencia de los operadores móviles virtuales y el empaquetamiento han favorecido la competencia y la disminución de precios. También mostramos cómo la convergencia tecnológica entre los servicios fijos y móviles promueve la restructuración y concentración del mercado.