869 resultados para Pagès, Jaume -- Intervius
Resumo:
A partir d’una recerca exhaustiva dins l’obra de Verdaguer, l’article ressegueix la presència de Balmes en la producció de l’escriptor de Folgueroles. Tot i no ésser irrellevant, es constata que el reflex de l’obra balmesiana en la verdagueriana és menor del que, en principi, caldria suposar en un membre tan destacat de la Renaixença vigatana, un moviment que va sentir pel pensador de Vic una pregona admiració. De fet, només dos poemes de l’extensa producció de Verdaguer són dedicats a Balmes, per bé que un altre, molt ideològic, en mostra una influència evident.
Resumo:
Abstract In this paper we study numerically a new type of central configurations of the 3n-body problem with equal masses which consist of three n-gons contained in three planes z = 0 and z = ±β = 0. The n-gon on z = 0 is scaled by a factor α and it is rotated by an angle of π/n with respect to the ones on z = ±β. In this kind of configurations, the masses on the planes z = 0 and z = β are at the vertices of an antiprism with bases of different size. The same occurs with the masses on z = 0 and z = −β. We call this kind of central configurations double-antiprism central configurations. We will show the existence of central configurations of this type.
On the existence of bi-pyramidal central configurations of the n + 2-body problem with an n-gon base
Resumo:
Abstract. In this paper we prove the existence of central con gurations of the n + 2{body problem where n equal masses are located at the vertices of a regular n{gon and the remaining 2 masses, which are not necessarily equal, are located on the straight line orthogonal to the plane containing the n{gon passing through its center. Here this kind of central con gurations is called bi{pyramidal central con gurations. In particular, we prove that if the masses mn+1 and mn+2 and their positions satisfy convenient relations, then the con guration is central. We give explicitly those relations.
Resumo:
In this paper we prove that there are only two different classes of central configura- tions with convenient masses located at the vertices of two nested regular tetrahedra: either when one of the tetrahedra is a homothecy of the other one, or when one of the tetrahedra is a homothecy followed by a rotation of Euler angles = = 0 and = of the other one. We also analyze the central configurations with convenient masses located at the vertices of three nested regular tetrahedra when one them is a homothecy of the other one, and the third one is a homothecy followed by a rotation of Euler angles = = 0 and = of the other two. In all these cases we have assumed that the masses on each tetrahedron are equal but masses on different tetrahedra could be different.
Resumo:
We consider 2n masses located at the vertices of two nested regular polyhedra with the same number of vertices. Assuming that the masses in each polyhedron are equal, we prove that for each ratio of the masses of the inner and the outer polyhedron there exists a unique ratio of the length of the edges of the inner and the outer polyhedron such that the configuration is central.
Resumo:
Three regular polyhedra are called nested if they have the same number of vertices n, the same center and the positions of the vertices of the inner polyhedron ri, the ones of the medium polyhedron Ri and the ones of the outer polyhedron Ri satisfy the relation Ri = ri and Ri = Rri for some scale factors R > > 1 and for all i = 1, . . . , n. We consider 3n masses located at the vertices of three nested regular polyhedra. We assume that the masses of the inner polyhedron are equal to m1, the masses of the medium one are equal to m2, and the masses of the outer one are equal to m3. We prove that if the ratios of the masses m2/m1 and m3/m1 and the scale factors and R satisfy two convenient relations, then this configuration is central for the 3n–body problem. Moreover there is some numerical evidence that, first, fixed two values of the ratios m2/m1 and m3/m1, the 3n–body problem has a unique central configuration of this type; and second that the number of nested regular polyhedra with the same number of vertices forming a central configuration for convenient masses and sizes is arbitrary.
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops.
Resumo:
Abstract. In this paper we study the relative equilibria and their stability for a system of three point particles moving under the action of a Lennard{Jones potential. A central con guration is a special position of the particles where the position and acceleration vectors of each particle are proportional, and the constant of proportionality is the same for all particles. Since the Lennard{Jones potential depends only on the mutual distances among the particles, it is invariant under rotations. In a rotating frame the orbits coming from central con gurations become equilibrium points, the relative equilibria. Due to the form of the potential, the relative equilibria depend on the size of the system, that is, depend strongly of the momentum of inertia I. In this work we characterize the relative equilibria, we nd the bifurcation values of I for which the number of relative equilibria is changing, we also analyze the stability of the relative equilibria.
Resumo:
In this paper we consider C1 vector fields X in R3 having a “generalized heteroclinic loop” L which is topologically homeomorphic to the union of a 2–dimensional sphere S2 and a diameter connecting the north with the south pole. The north pole is an attractor on S2 and a repeller on . The equator of the sphere is a periodic orbit unstable in the north hemisphere and stable in the south one. The full space is topologically homeomorphic to the closed ball having as boundary the sphere S2. We also assume that the flow of X is invariant under a topological straight line symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient Poincar´e map, we prove the existence of infinitely many symmetric periodic orbits of X near L that gives n turns around L in a period. We also exhibit a class of polynomial vector fields of degree 4 in R3 satisfying this dynamics.
Resumo:
In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.
Resumo:
El artículo presenta una parte de los resultados de una investigación realizada en 2008 donde se describen y analizan actores, contenidos y tendencias del marketing móvil en Cataluña. El marketing móvil está transformando las formas de comunicación publicitaria, ya que, al tratarse de un medio de comunicación unipersonal, directo e interactivo y gozar de una alta implantación en el mercado, hace que sea un instrumento especialmente atractivo para realizar muchos tipos de acciones de marketing. La investigación traza un primer mapa de la situación, propone una serie de categorías de análisis y futuras tendencias y sienta las bases para futuros estudios más específicos sobre marketing móvil.