Equilibrium points and central configurations for the Lennard-Jones 2-and 3-body problems


Autoria(s): Corbera Subirana, Montserrat; Llibre, Jaume; Pérez-Chavela, Ernesto
Contribuinte(s)

Universitat de Vic. Escola Politècnica Superior

Universitat de Vic. Grup de Recerca en Tecnologies Digitals

Data(s)

2004

Resumo

Abstract. In this paper we study the relative equilibria and their stability for a system of three point particles moving under the action of a Lennard{Jones potential. A central con guration is a special position of the particles where the position and acceleration vectors of each particle are proportional, and the constant of proportionality is the same for all particles. Since the Lennard{Jones potential depends only on the mutual distances among the particles, it is invariant under rotations. In a rotating frame the orbits coming from central con gurations become equilibrium points, the relative equilibria. Due to the form of the potential, the relative equilibria depend on the size of the system, that is, depend strongly of the momentum of inertia I. In this work we characterize the relative equilibria, we nd the bifurcation values of I for which the number of relative equilibria is changing, we also analyze the stability of the relative equilibria.

Formato

36 p.

Identificador

http://hdl.handle.net/10854/2213

Idioma(s)

eng

Publicador

Springer Verlag

Direitos

Tots els drets reservats (c) Springer (The original publication is available at www.springerlink.com)

Palavras-Chave #Matemàtica
Tipo

info:eu-repo/semantics/article