78 resultados para Time Distortion
Resumo:
We present simple procedures for the prediction of a real valued sequence. The algorithms are based on a combinationof several simple predictors. We show that if the sequence is a realization of a bounded stationary and ergodic random process then the average of squared errors converges, almost surely, to that of the optimum, given by the Bayes predictor. We offer an analog result for the prediction of stationary gaussian processes.
Resumo:
Condence intervals in econometric time series regressions suffer fromnotorious coverage problems. This is especially true when the dependencein the data is noticeable and sample sizes are small to moderate, as isoften the case in empirical studies. This paper suggests using thestudentized block bootstrap and discusses practical issues, such as thechoice of the block size. A particular data-dependent method is proposedto automate the method. As a side note, it is pointed out that symmetricconfidence intervals are preferred over equal-tailed ones, since theyexhibit improved coverage accuracy. The improvements in small sampleperformance are supported by a simulation study.
Resumo:
This paper provides a method to estimate time varying coefficients structuralVARs which are non-recursive and potentially overidentified. The procedureallows for linear and non-linear restrictions on the parameters, maintainsthe multi-move structure of standard algorithms and can be used toestimate structural models with different identification restrictions. We studythe transmission of monetary policy shocks and compare the results with thoseobtained with traditional methods.
Resumo:
In this paper we propose a general technique to develop first and second order closed-form approximation formulas for short-time options withrandom strikes. Our method is based on Malliavin calculus techniques andallows us to obtain simple closed-form approximation formulas dependingon the derivative operator. The numerical analysis shows that these formulas are extremely accurate and improve some previous approaches ontwo-assets and three-assets spread options as Kirk's formula or the decomposition mehod presented in Alòs, Eydeland and Laurence (2011).
Resumo:
This paper analyzes empirically the volatility of consumption-based stochastic discount factors as a measure of implicit economic fears by studying its relationship with future economic and stock market cycles. Time-varying economic fears seem to be well captured by the volatility of stochastic discount factors. In particular, the volatility of recursive utility-based stochastic discount factor with contemporaneous growth explains between 9 and 34 percent of future changes in industrial production at short and long horizons respectively. They also explain ex-ante uncertainty and risk aversion. However, future stock market cycles are better explained by a similar stochastic discount factor with long-run consumption growth. This specification of the stochastic discount factor presents higher volatility and lower pricing errors than the specification with contemporaneous consumption growth.
Resumo:
For many goods (such as experience goods or addictive goods), consumers preferences may change over time. In this paper, we examine a monopolist s optimal pricing schedule when current consumption can affect a consumer s valuation in the future and valuations are unobservable. We assume that consumers are anonymous, i.e. the monopolist can t observe a consumer s past consumption history. For myopic consumers, the optimal consumption schedule is distorted upwards, involving substantial discounts for low valuation types. This pushes low types into higher valuations, from which rents can be extracted.For forward looking consumers, there may be a further upward distortion of consumption due to a reversal of the adverse selection effect; low valuation consumers now have a strong interest in consumption in order to increase their valuations. Firms will find it profitable to educate consumers and encourage forward looking behavior.
Resumo:
The paper develops a method to solve higher-dimensional stochasticcontrol problems in continuous time. A finite difference typeapproximation scheme is used on a coarse grid of low discrepancypoints, while the value function at intermediate points is obtainedby regression. The stability properties of the method are discussed,and applications are given to test problems of up to 10 dimensions.Accurate solutions to these problems can be obtained on a personalcomputer.
Resumo:
When dealing with the design of service networks, such as healthand EMS services, banking or distributed ticket selling services, thelocation of service centers has a strong influence on the congestion ateach of them, and consequently, on the quality of service. In this paper,several models are presented to consider service congestion. The firstmodel addresses the issue of the location of the least number of single--servercenters such that all the population is served within a standard distance,and nobody stands in line for a time longer than a given time--limit, or withmore than a predetermined number of other clients. We then formulateseveral maximal coverage models, with one or more servers per service center.A new heuristic is developed to solve the models and tested in a 30--nodesnetwork.
Resumo:
This paper tests the internal consistency of time trade-off utilities.We find significant violations of consistency in the direction predictedby loss aversion. The violations disappear for higher gauge durations.We show that loss aversion can also explain that for short gaugedurations time trade-off utilities exceed standard gamble utilities. Ourresults suggest that time trade-off measurements that use relativelyshort gauge durations, like the widely used EuroQol algorithm(Dolan 1997), are affected by loss aversion and lead to utilities thatare too high.
Resumo:
We obtain minimax lower and upper bounds for the expected distortionredundancy of empirically designed vector quantizers. We show that the meansquared distortion of a vector quantizer designed from $n$ i.i.d. datapoints using any design algorithm is at least $\Omega (n^{-1/2})$ awayfrom the optimal distortion for some distribution on a bounded subset of${\cal R}^d$. Together with existing upper bounds this result shows thatthe minimax distortion redundancy for empirical quantizer design, as afunction of the size of the training data, is asymptotically on the orderof $n^{1/2}$. We also derive a new upper bound for the performance of theempirically optimal quantizer.
Resumo:
This paper presents a test of the predictive validity of various classes ofQALY models (i.e., linear, power and exponential models). We first estimatedTTO utilities for 43 EQ-5D chronic health states and next these states wereembedded in health profiles. The chronic TTO utilities were then used topredict the responses to TTO questions with health profiles. We find that thepower QALY model clearly outperforms linear and exponential QALY models.Optimal power coefficient is 0.65. Our results suggest that TTO-based QALYcalculations may be biased. This bias can be avoided using a power QALY model.
Resumo:
We analyze the impact of a minimum price variation (tick) and timepriority on the dynamics of quotes and the trading costs when competitionfor the order flow is dynamic. We find that convergence to competitiveoutcomes can take time and that the speed of convergence is influencedby the tick size, the priority rule and the characteristics of the orderarrival process. We show also that a zero minimum price variation is neveroptimal when competition for the order flow is dynamic. We compare thetrading outcomes with and without time priority. Time priority is shownto guarantee that uncompetitive spreads cannot be sustained over time.However it can sometimes result in higher trading costs. Empiricalimplications are proposed. In particular, we relate the size of thetrading costs to the frequency of new offers and the dynamics of theinside spread to the state of the book.
Resumo:
In this paper, generalizing results in Alòs, León and Vives (2007b), we see that the dependence of jumps in the volatility under a jump-diffusion stochastic volatility model, has no effect on the short-time behaviour of the at-the-money implied volatility skew, although the corresponding Hull and White formula depends on the jumps. Towards this end, we use Malliavin calculus techniques for Lévy processes based on Løkka (2004), Petrou (2006), and Solé, Utzet and Vives (2007).
Resumo:
We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from recent developments of the theory of the prediction of individual sequences. We show that if thesequence is a realization of a stationary and ergodic random process then the average number of mistakes converges, almost surely, to that of the optimum, given by the Bayes predictor.