Improved nonparametric confidence intervals in time series regressions


Autoria(s): Romano, Joseph P.; Wolf, Michael
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

Condence intervals in econometric time series regressions suffer fromnotorious coverage problems. This is especially true when the dependencein the data is noticeable and sample sizes are small to moderate, as isoften the case in empirical studies. This paper suggests using thestudentized block bootstrap and discusses practical issues, such as thechoice of the block size. A particular data-dependent method is proposedto automate the method. As a side note, it is pointed out that symmetricconfidence intervals are preferred over equal-tailed ones, since theyexhibit improved coverage accuracy. The improvements in small sampleperformance are supported by a simulation study.

Identificador

http://hdl.handle.net/10230/1246

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Statistics, Econometrics and Quantitative Methods #bootstrap #confidence intervals #studentization #time series regressions #prewhitening
Tipo

info:eu-repo/semantics/workingPaper