76 resultados para periodic orbit
Resumo:
We calculate the effective diffusion coefficient in convective flows which are well described by one spatial mode. We use an expansion in the distance from onset and homogenization methods to obtain an explicit expression for the transport coefficient. We find that spatially periodic fluid flow enhances the molecular diffusion D by a term proportional to D-1. This enhancement should be easy to observe in experiments, since D is a small number.
Resumo:
We study the families of periodic orbits of the spatial isosceles 3-body problem (for small enough values of the mass lying on the symmetry axis) coming via the analytic continuation method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits. These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom system. The continuation of periodic orbits is done in two different ways, the first going directly from the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces different results. This work is merely analytic and uses the variational equations in order to apply Poincar´e’s continuation method.
Resumo:
We prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics.
Resumo:
For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops.
Resumo:
In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.
Resumo:
Contingut del Pòster presentat al congrés New Trends in Dynamical Systems
Resumo:
Consider the celebrated Lyness recurrence $x_{n+2}=(a+x_{n+1})/x_{n}$ with $a\in\Q$. First we prove that there exist initial conditions and values of $a$ for which it generates periodic sequences of rational numbers with prime periods $1,2,3,5,6,7,8,9,10$ or $12$ and that these are the only periods that rational sequences $\{x_n\}_n$ can have. It is known that if we restrict our attention to positive rational values of $a$ and positive rational initial conditions the only possible periods are $1,5$ and $9$. Moreover 1-periodic and 5-periodic sequences are easily obtained. We prove that for infinitely many positive values of $a,$ positive 9-period rational sequences occur. This last result is our main contribution and answers an open question left in previous works of Bastien \& Rogalski and Zeeman. We also prove that the level sets of the invariant associated to the Lyness map is a two-parameter family of elliptic curves that is a universal family of the elliptic curves with a point of order $n, n\ge5,$ including $n$ infinity. This fact implies that the Lyness map is a universal normal form for most birrational maps on elliptic curves.
Resumo:
This paper studies non-autonomous Lyness type recurrences of the form x_{n+2}=(a_n+x_n)/x_{n+1}, where a_n is a k-periodic sequence of positive numbers with prime period k. We show that for the cases k in {1,2,3,6} the behavior of the sequence x_n is simple(integrable) while for the remaining cases satisfying k not a multiple of 5 this behavior can be much more complicated(chaotic). The cases k multiple of 5 are studied separately.
Resumo:
This paper studies non-autonomous Lyness type recurrences of the form xn+2 = (an+xn+1)=xn, where fang is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k 2 f1; 2; 3; 6g the behavior of the sequence fxng is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some di erent features.
Resumo:
We study the existence of periodic solutions of the non--autonomous periodic Lyness' recurrence u_{n+2}=(a_n+u_{n+1})/u_n, where {a_n} is a cycle with positive values a,b and with positive initial conditions. It is known that for a=b=1 all the sequences generated by this recurrence are 5-periodic. We prove that for each pair (a,b) different from (1,1) there are infinitely many initial conditions giving rise to periodic sequences, and that the family of recurrences have almost all the even periods. If a is not equal to b, then any odd period, except 1, appears.
Resumo:
The existence of a new class of inclined periodic orbits of the collision restricted three-body problem is shown. The symmetric periodic solutions found are perturbations of elliptic kepler orbits and they exist only for special values of the inclination and are related to the motion of a satellite around an oblate planet
Resumo:
Background: In Catalonia (Spain) breast cancer mortality has declined since the beginning of the 1990s. The dissemination of early detection by mammography and the introduction of adjuvant treatments are among the possible causes of this decrease, and both were almost coincident in time. Thus, understanding how these procedures were incorporated into use in the general population and in women diagnosed with breast cancer is very important for assessing their contribution to the reduction in breast cancer mortality. In this work we have modeled the dissemination of periodic mammography and described repeat mammography behavior in Catalonia from 1975 to 2006. Methods: Cross-sectional data from three Catalan Health Surveys for the calendar years 1994, 2002 and 2006 was used. The dissemination of mammography by birth cohort was modeled using a mixed effects model and repeat mammography behavior was described by age and survey year. Results: For women born from 1938 to 1952, mammography clearly had a period effect, meaning that they started to have periodic mammograms at the same calendar years but at different ages. The age at which approximately 50% of the women were receiving periodic mammograms went from 57.8 years of age for women born in 1938–1942 to 37.3 years of age for women born in 1963–1967. Women in all age groups experienced an increase in periodic mammography use over time, although women in the 50–69 age group have experienced the highest increase. Currently, the target population of the Catalan Breast Cancer Screening Program, 50–69 years of age, is the group that self-reports the highest utilization of periodic mammograms, followed by the 40–49 age group. A higher proportion of women of all age groups have annual mammograms rather than biennial or irregular ones. Conclusion: Mammography in Catalonia became more widely implemented during the 1990s. We estimated when cohorts initiated periodic mammograms and how frequently women are receiving them. These two pieces of information will be entered into a cost-effectiveness model of early detection in Catalonia.