124 resultados para parametric implicit vector equilibrium problems
Resumo:
This paper presents an analysis of motor vehicle insurance claims relating to vehicle damage and to associated medical expenses. We use univariate severity distributions estimated with parametric and non-parametric methods. The methods are implemented using the statistical package R. Parametric analysis is limited to estimation of normal and lognormal distributions for each of the two claim types. The nonparametric analysis presented involves kernel density estimation. We illustrate the benefits of applying transformations to data prior to employing kernel based methods. We use a log-transformation and an optimal transformation amongst a class of transformations that produces symmetry in the data. The central aim of this paper is to provide educators with material that can be used in the classroom to teach statistical estimation methods, goodness of fit analysis and importantly statistical computing in the context of insurance and risk management. To this end, we have included in the Appendix of this paper all the R code that has been used in the analysis so that readers, both students and educators, can fully explore the techniques described
Resumo:
This paper discusses the use of probabilistic or randomized algorithms for solving combinatorial optimization problems. Our approach employs non-uniform probability distributions to add a biased random behavior to classical heuristics so a large set of alternative good solutions can be quickly obtained in a natural way and without complex conguration processes. This procedure is especially useful in problems where properties such as non-smoothness or non-convexity lead to a highly irregular solution space, for which the traditional optimization methods, both of exact and approximate nature, may fail to reach their full potential. The results obtained are promising enough to suggest that randomizing classical heuristics is a powerful method that can be successfully applied in a variety of cases.
Resumo:
The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property).
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
In this paper we present a new, accurate form of the heat balance integral method, termed the Combined Integral Method (or CIM). The application of this method to Stefan problems is discussed. For simple test cases the results are compared with exact and asymptotic limits. In particular, it is shown that the CIM is more accurate than the second order, large Stefan number, perturbation solution for a wide range of Stefan numbers. In the initial examples it is shown that the CIM reduces the standard problem, consisting of a PDE defined over a domain specified by an ODE, to the solution of one or two algebraic equations. The latter examples, where the boundary temperature varies with time, reduce to a set of three first order ODEs.
Resumo:
In this paper the two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the Heat Balance and Refined Integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t & 0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.
Resumo:
This paper provides a natural way of reaching an agreement between two prominent proposals in a bankruptcy problem. Particularly, using the fact that such problems can be faced from two different points of views, awards and losses, we justify the average of any pair of dual bankruptcy rules through the definition a double recursive process. Finally, by considering three posible sets of equity principles that a particular society may agree on, we retrieve the average of old and well known bankruptcy rules, the Constrained Equal Awards and the Constrained Equal Losses rules, Piniles’ rule and its dual rule, and the Constrained Egalitarian rule and its dual rule. Keywords: Bankruptcy problems, Midpoint, Bounds, Duality, Recursivity. JEL classification: C71, D63, D71.
Resumo:
The commitment among agents has always been a difficult task, especially when they have to decide how to distribute the available amount of a scarce resource among all. On the one hand, there are a multiplicity of possible ways for assigning the available amount; and, on the other hand, each agent is going to propose that distribution which provides her the highest possible award. In this paper, with the purpose of making this agreement easier, firstly we use two different sets of basic properties, called Commonly Accepted Equity Principles, to delimit what agents can propose as reasonable allocations. Secondly, we extend the results obtained by Chun (1989) and Herrero (2003), obtaining new characterizations of old and well known bankruptcy rules. Finally, using the fact that bankruptcy problems can be analyzed from awards and losses, we define a mechanism which provides a new justification of the convex combinations of bankruptcy rules. Keywords: Bankruptcy problems, Unanimous Concessions procedure, Diminishing Claims mechanism, Piniles’ rule, Constrained Egalitarian rule. JEL classification: C71, D63, D71.
Resumo:
We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners.
Resumo:
In a distribution problem, and specfii cally in bankruptcy issues, the Proportional (P) and the Egalitarian (EA) divisions are two of the most popular ways to resolve the conflict. The Constrained Equal Awards rule (CEA) is introduced in bankruptcy literature to ensure that no agent receives more than her claim, a problem that can arise when using the egalitarian division. We propose an alternative modi cation, by using a convex combination of P and EA. The recursive application of this new rule finishes at the CEA rule. Our solution concept ensures a minimum amount to each agent, and distributes the remaining estate in a proportional way. Keywords: Bankruptcy problems, Proportional rule, Equal Awards, Convex combination of rules, Lorenz dominance. JEL classi fication: C71, D63, D71.
Resumo:
The idea of ensuring a guarantee (a minimum amount of the resources) to each agent has recently acquired great relevance, in both social and politi- cal terms. Furthermore, the notion of Solidarity has been treated frequently in redistribution problems to establish that any increment of the resources should be equally distributed taking into account some relevant characteris- tics. In this paper, we combine these two general concepts, guarantee and solidarity, to characterize the uniform rules in bankruptcy problems (Con- strained Equal Awards and Constrained Equal Losses rules). Keywords: Constrained Equal Awards, Constrained Equal Losses, Lower bounds, Bankruptcy problems, Solidarity. JEL classification: C71, D63, D71.
Resumo:
The solution for the ‘Contested Garment Problem’, proposed in the Babylonic Talmud, suggests that each agent should receive at least some part of the resources whenever the demand overcomes the available amount. In this context, we propose a new method to define lower bounds on awards, an idea that has underlied the theoretical analysis of bankruptcy problems from its beginning (O’Neill, 1982) to present day (Dominguez and Thomson, 2006). Specifically, starting from the fact that a society establishes its own set of ‘Commonly Accepted Equity Principles’, our proposal ensures to each agent the smallest amount she gets according to all the admissible rules. As in general this new bound will not exhaust the estate, we analyze its recursive application for different sets of equity principles. Keywords: Bankruptcy problems, Bankruptcy rules, Lower bounds, Recursive process
Resumo:
The Hardy-Weinberg law, formulated about 100 years ago, states that under certainassumptions, the three genotypes AA, AB and BB at a bi-allelic locus are expected to occur inthe proportions p2, 2pq, and q2 respectively, where p is the allele frequency of A, and q = 1-p.There are many statistical tests being used to check whether empirical marker data obeys theHardy-Weinberg principle. Among these are the classical xi-square test (with or withoutcontinuity correction), the likelihood ratio test, Fisher's Exact test, and exact tests in combinationwith Monte Carlo and Markov Chain algorithms. Tests for Hardy-Weinberg equilibrium (HWE)are numerical in nature, requiring the computation of a test statistic and a p-value.There is however, ample space for the use of graphics in HWE tests, in particular for the ternaryplot. Nowadays, many genetical studies are using genetical markers known as SingleNucleotide Polymorphisms (SNPs). SNP data comes in the form of counts, but from the countsone typically computes genotype frequencies and allele frequencies. These frequencies satisfythe unit-sum constraint, and their analysis therefore falls within the realm of compositional dataanalysis (Aitchison, 1986). SNPs are usually bi-allelic, which implies that the genotypefrequencies can be adequately represented in a ternary plot. Compositions that are in exactHWE describe a parabola in the ternary plot. Compositions for which HWE cannot be rejected ina statistical test are typically “close" to the parabola, whereas compositions that differsignificantly from HWE are “far". By rewriting the statistics used to test for HWE in terms ofheterozygote frequencies, acceptance regions for HWE can be obtained that can be depicted inthe ternary plot. This way, compositions can be tested for HWE purely on the basis of theirposition in the ternary plot (Graffelman & Morales, 2008). This leads to nice graphicalrepresentations where large numbers of SNPs can be tested for HWE in a single graph. Severalexamples of graphical tests for HWE (implemented in R software), will be shown, using SNPdata from different human populations
Resumo:
Presentation in CODAWORK'03, session 4: Applications to archeometry
Resumo:
A major obstacle to processing images of the ocean floor comes from the absorption and scattering effects of the light in the aquatic environment. Due to the absorption of the natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion, and, as the vehicle moves, induce shadows in the scene. For this reason, the first step towards application of standard computer vision techniques to underwater imaging requires dealing first with these lighting problems. This paper analyses and compares existing methodologies to deal with low-contrast, nonuniform illumination in underwater image sequences. The reviewed techniques include: (i) study of the illumination-reflectance model, (ii) local histogram equalization, (iii) homomorphic filtering, and, (iv) subtraction of the illumination field. Several experiments on real data have been conducted to compare the different approaches