A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations


Autoria(s): Ayuso, B.; Georgiev, Ivan; Kraus, Johannes; Zikatanov, Ludmil
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

2011

Resumo

We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners.

Formato

28 p.

Identificador

http://hdl.handle.net/2072/182626

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;1056

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Equacions lineals #Elasticitat #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint