A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations
Contribuinte(s) |
Centre de Recerca Matemàtica |
---|---|
Data(s) |
2011
|
Resumo |
We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners. |
Formato |
28 p. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Centre de Recerca Matemàtica |
Relação |
Prepublicacions del Centre de Recerca Matemàtica;1056 |
Direitos |
info:eu-repo/semantics/openAccess L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
Fonte |
RECERCAT (Dipòsit de la Recerca de Catalunya) |
Palavras-Chave | #Equacions lineals #Elasticitat #517 - Anàlisi |
Tipo |
info:eu-repo/semantics/preprint |