63 resultados para silicon-on-insulator (SOI)
Resumo:
Silicon nanocrystals (Si-nc) is an enabling material for silicon photonics, which is no longer an emerging field of research but an available technology with the first commercial products available on the market. In this paper, properties and applications of Si-nc in silicon photonics are reviewed. After a brief history of silicon photonics, the limitations of silicon as a light emitter are discussed and the strategies to overcome them are briefly treated, with particular attention to the recent achievements. Emphasis is given to the visible optical gain properties of Si-nc and to its sensitization effect on Er ions to achieve infrared light amplification. The state of the art of Si-nc applied in a few photonic components is reviewed and discussed. The possibility to exploit Si-nc for solar cells is also presented. in addition, nonlinear optical effects, which enable fast all-optical switches, are described.
Resumo:
We report a spectroscopic study about the energy transfer mechanism among silicon nanoparticles (Si-np), both amorphous and crystalline, and Er ions in a silicon dioxide matrix. From infrared spectroscopic analysis, we have determined that the physics of the transfer mechanism does not depend on the Si-np nature, finding a fast (< 200 ns) energy transfer in both cases, while the amorphous nanoclusters reveal a larger transfer efficiency than the nanocrystals. Moreover, the detailed spectroscopic results in the visible range here reported are essential to understand the physics behind the sensitization effect, whose knowledge assumes a crucial role to enhance the transfer rate and possibly employing the material in optical amplifier devices. Joining the experimental data, performed with pulsed and continuous-wave excitation, we develop a model in which the internal intraband recombination within Si-np is competitive with the transfer process via an Auger electron"recycling" effect. Posing a different light on some detrimental mechanism such as Auger processes, our findings clearly recast the role of Si-np in the sensitization scheme, where they are able to excite very efficiently ions in close proximity to their surface. (C) 2010 American Institute of Physics.
Resumo:
We propose a light emitting transistor based on silicon nanocrystals provided with 200 Mbits/ s built-in modulation. Suppression of electroluminescence from silicon nanocrystals embedded into the gate oxide of a field effect transistor is achieved by fast Auger quenching. In this process, a modulating drain signal causes heating of carriers in the channel and facilitates the charge injection into the nanocrystals. This excess of charge enables fast nonradiative processes that are used to obtain 100% modulation depths at modulating voltages of 1 V.
Resumo:
By an analysis of the exchange of carriers through a semiconductor junction, a general relationship for the nonequilibrium population of the interface states in Schottky barrier diodes has been derived. Based on this relationship, an analytical expression for the ideality factor valid in the whole range of applied bias has been given. This quantity exhibits two different behaviours depending on the value of the applied bias with respect to a critical voltage. This voltage, which depends on the properties of the interfacial layer, constitutes a new parameter to complete the characterization of these junctions. A simple interpretation of the different behaviours of the ideality factor has been given in terms of the nonequilibrium charging properties of interface states, which in turn explains why apparently different approaches have given rise to similar results. Finally, the relevance of our results has been considered on the determination of the density of interface states from nonideal current-voltage characteristics and in the evaluation of the effects of the interfacial layer thickness in metal-insulator-semiconductor tunnelling diodes.
Resumo:
Neutron diffraction has been used to study in situ the nanocrystallization process of Fe73.5Cu1Nb3Si22.5-xBx (x = 5, 9, and 12) amorphous alloys. Nanocrystallization results in a decrease of both the silicon content and the grain size of the Fe(Si) phase with increasing value of x. By comparing the radial distribution function peak areas with those predicted for ideal bcc and DO3 structure, it can be concluded that the ordering in DO3 Fe(Si) crystals increases with the silicon content.
Resumo:
In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρc ∼ 10 mΩ cm2) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.
Resumo:
In this paper we present results on phosphorous-doped μc-Si:H by catalytic chemical vapour deposition in a reactor with an internal arrangement that does not include a shutter. An incubation phase of around 20 nm seems to be the result of the uncontrolled conditions that take place during the first stages of deposition. The optimal deposition conditions found lead to a material with a dark conductivity of 12.8 S/cm, an activation energy of 0.026 eV and a crystalline fraction of 0.86. These values make the layers suitable to be implemented in solar cells.
Resumo:
In this paper, we have presented results on silicon thin films deposited by hot-wire CVD at low substrate temperatures (200 °C). Films ranging from amorphous to nanocrystalline were obtained by varying the filament temperature from 1500 to 1800 °C. A crystalline fraction of 50% was obtained for the sample deposited at 1700 °C. The results obtained seemed to indicate that atomic hydrogen plays a leading role in the obtaining of nanocrystalline silicon. The optoelectronic properties of the amorphous material obtained in these conditions are slightly poorer than the ones observed in device-grade films grown by plasma-enhanced CVD due to a higher hydrogen incorporation (13%).
Resumo:
In this paper we present new results on doped μc-Si:H thin films deposited by hot-wire chemical vapour deposition (HWCVD) in the very low temperature range (125-275°C). The doped layers were obtained by the addition of diborane or phosphine in the gas phase during deposition. The incorporation of boron and phosphorus in the films and their influence on the crystalline fraction are studied by secondary ion mass spectrometry and Raman spectroscopy, respectively. Good electrical transport properties were obtained in this deposition regime, with best dark conductivities of 2.6 and 9.8 S cm -1 for the p- and n-doped films, respectively. The effect of the hydrogen dilution and the layer thickness on the electrical properties are also studied. Some technological conclusions referred to cross contamination could be deduced from the nominally undoped samples obtained in the same chamber after p- and n-type heavily doped layers.
Resumo:
This paper deals with the determination of the interface density of states in amorphous silicon-based multilayers. Photothermal deflection spectroscopy is used to characterize two series of aSi:H/aSi1-xCx:H multilayers, and a new approach in the treatment of experimental dada is used in order to obtain accurate results. From this approach, an upper limit of 10^10 cm-2 is determined for the interface density of states.
Resumo:
A general and straightforward analytical expression for the defect-state-energy distribution of a-Si:H is obtained through a statistical-mechanical treatment of the hydrogen occupation for different sites. Broadening of available defect energy levels (defect pool) and their charge state, both in electronic equilibrium and nonequilibrium steady-state situations, are considered. The model gives quantitative results that reproduce different defect phenomena, such as the thermally activated spin density, the gap-state dependence on the Fermi level, and the intensity and temperature dependence of light-induced spin density. An interpretation of the Staebler-Wronski effect is proposed, based on the ''conversion'' of shallow charged centers to neutrals near the middle of the gap as a consequence of hydrogen redistribution.
Resumo:
Thermal crystallization experiments carried out using calorimetry on several a-Si:H materials with different microstructures are reported. The samples were crystallized during heating ramps at constant heating rates up to 100 K/min. Under these conditions, crystallization takes place above 700 C and progressively deviates from the standard kinetics. In particular, two crystallization processes were detected in conventional a-Si:H, which reveal an enhancement of the crystallization rate. At100 K/min, such enhancement is consistent with a diminution of the crystallization time by a factor of 7. In contrast, no systematic variation of the resulting grain size was observed. Similar behavior was also detected in polymorphous silicon and silicon nanoparticles, thus showing that it is characteristic of a variety of hydrogenated amorphous silicon materials.
Resumo:
The quenching of the photoluminescence of Si nanopowder grown by plasma-enhanced chemical vapor deposition due to pressure was measured for various gases ( H2, O2, N2, He, Ne, Ar, and Kr) and at different temperatures. The characteristic pressure, P0, of the general dependence I(P) = I0¿exp(¿P/P0) is gas and temperature dependent. However, when the number of gas collisions is taken as the variable instead of pressure, then the quenching is the same within a gas family (mono- or diatomic) and it is temperature independent. So it is concluded that the effect depends on the number of gas collisions irrespective of the nature of the gas or its temperature.
Resumo:
An analytical model of an amorphous silicon p-i-n solar cell is presented to describe its photovoltaic behavior under short-circuit conditions. It has been developed from the analysis of numerical simulation results. These results reproduce the experimental illumination dependence of short-circuit resistance, which is the reciprocal slope of the I(V) curve at the short-circuit point. The recombination rate profiles show that recombination in the regions of charged defects near the p-i and i-n interfaces should not be overlooked. Based on the interpretation of the numerical solutions, we deduce analytical expressions for the recombination current and short-circuit resistance. These expressions are given as a function of an effective ¿¿ product, which depends on the intensity of illumination. We also study the effect of surface recombination with simple expressions that describe its influence on current loss and short-circuit resistance.
Resumo:
By an analysis of the exchange of carriers through a semiconductor junction, a general relationship for the nonequilibrium population of the interface states in Schottky barrier diodes has been derived. Based on this relationship, an analytical expression for the ideality factor valid in the whole range of applied bias has been given. This quantity exhibits two different behaviours depending on the value of the applied bias with respect to a critical voltage. This voltage, which depends on the properties of the interfacial layer, constitutes a new parameter to complete the characterization of these junctions. A simple interpretation of the different behaviours of the ideality factor has been given in terms of the nonequilibrium charging properties of interface states, which in turn explains why apparently different approaches have given rise to similar results. Finally, the relevance of our results has been considered on the determination of the density of interface states from nonideal current-voltage characteristics and in the evaluation of the effects of the interfacial layer thickness in metal-insulator-semiconductor tunnelling diodes.