54 resultados para problem instance behavior
Resumo:
The present notes are intended to present a detailed review of the existing results in dissipative kinetic theory which make use of the contraction properties of two main families of probability metrics: optimal mass transport and Fourier-based metrics. The first part of the notes is devoted to a self-consistent summary and presentation of the properties of both probability metrics, including new aspects on the relationships between them and other metrics of wide use in probability theory. These results are of independent interest with potential use in other contexts in Partial Differential Equations and Probability Theory. The second part of the notes makes a different presentation of the asymptotic behavior of Inelastic Maxwell Models than the one presented in the literature and it shows a new example of application: particle's bath heating. We show how starting from the contraction properties in probability metrics, one can deduce the existence, uniqueness and asymptotic stability in classical spaces. A global strategy with this aim is set up and applied in two dissipative models.
Resumo:
We study a model where agents, located in a social network, decide whether to exert effort or not in experimenting with a new technology (or acquiring a new skill, innovating, etc.). We assume that agents have strong incentives to free ride on their neighbors' effort decisions. In the static version of the model efforts are chosen simultaneously. In equilibrium, agents exerting effort are never connected with each other and all other agents are connected with at least one agent exerting effort. We propose a mean-field dynamics in which agents choose in each period the best response to the last period's decisions of their neighbors. We characterize the equilibrium of such a dynamics and show how the pattern of free riders in the network depends on properties of the connectivity distribution.
Resumo:
Counter automata are more powerful versions of finite state automata where addition and subtraction operations are permitted on a set of n integer registers, called counters. We show that the word problem of Zn is accepted by a nondeterministic m-counter automaton if and only if m &= n.
Resumo:
The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem – to decide whether a word is an element of some basis of the free group – and the free factor problem can also be solved in polynomial time.
Resumo:
Per a altes freqüències, les connexions poden tenir un paper rellevant. Atès que la velocitat de propagació dels senyals electromagnètics, c, en el cable no és infinita, el voltatge i el corrent al llarg del cable varien amb el temps. Per tant, amb l’objectiu de reproduir el comportament elèctric de dispositius nanoelectrònics a freqüències de THz, en aquest treball hem estudiat la regió activa del dispositiu nanoelectrònic i les seves connexions, en un sistema global complex. Per a aquest estudi hem utilitzat un nou concepte de dispositiu anomenat Driven Tunneling Device (DTD). Per a les connexions, hem plantejat el problema a partir de tot el conjunt de les equacions de Maxwell, ja que per a les freqüències i longituds de cable considerats, la contribució del camp magnètic és també important. En particular, hem suposat que la propagació que és dóna en el cable és una propagació transversal electromagnètica (TEM). Un cop definit el problema hem desenvolupat un programa en llenguatge FORTRAN que amb l'algoritme de diferències finites soluciona el sistema global. La solució del sistema global s'ha aplicat a una configuració particular de DTD com a multiplicador de freqüència per tal de discutir quins paràmetres de les connexions permet maximitzar la potència real que pot donar el DTD.
Resumo:
Conflict among member states regarding the distribution of net financial burdens has been allowed to contaminate the entire design of the EU budget with very negative consequences in terms of equity, efficiency and transparency. To get around this problem and pave the way for a substantive budget reform, we propose to decouple distributional negotiations from the rest of the budget process by linking member state net balances in a rigid manner to relative prosperity. This would be achieved through the introduction of a system of compensating horizontal transfers that would take to its logical conclusion the Commission's proposal for a generalized compensation mechanism. We discuss the impact of the proposed scheme on member states? incentives and illustrate its financial implications using revenue and expenditure projections for 2013 that are based on the current Financial Perspectives and Own Resources Decision.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
One of the most persistent and lasting debates in economic research refers to whether the answers to subjective questions can be used to explain individuals’ economic behavior. Using panel data for twelve EU countries, in the present study we analyze the causal relationship between self-reported housing satisfaction and residential mobility. Our results indicate that: i) households unsatisfied with their current housing situation are more likely to move; ii) housing satisfaction raises after a move, and; iii) housing satisfaction increases with the transition from being a renter to becoming a homeowner. Some interesting cross-country differences are observed. Our findings provide evidence in favor of use of subjective indicators of satisfaction with certain life domains in the analysis of individuals’ economic conduct.
Resumo:
Guba and Sapir asked, in their joint paper [8], if the simultaneous conjugacy problem was solvable in Diagram Groups or, at least, for Thompson's group F. We give an elementary proof for the solution of the latter question. This relies purely on the description of F as the group of piecewise linear orientation-preserving homeomorphisms of the unit. The techniques we develop allow us also to solve the ordinary conjugacy problem as well, and we can compute roots and centralizers. Moreover, these techniques can be generalized to solve the same questions in larger groups of piecewise-linear homeomorphisms.
Resumo:
In this work we introduce and analyze a linear size-structured population model with infinite states-at-birth. We model the dynamics of a population in which individuals have two distinct life-stages: an “active” phase when individuals grow, reproduce and die and a second “resting” phase when individuals only grow. Transition between these two phases depends on individuals’ size. First we show that the problem is governed by a positive quasicontractive semigroup on the biologically relevant state space. Then we investigate, in the framework of the spectral theory of linear operators, the asymptotic behavior of solutions of the model. We prove that the associated semigroup has, under biologically plausible assumptions, the property of asynchronous exponential growth.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove existence theorems for the Dirichlet problem for hypersurfaces of constant special Lagrangian curvature in Hadamard manifolds. The first results are obtained using the continuity method and approximation and then refined using two iterations of the Perron method. The a-priori estimates used in the continuity method are valid in any ambient manifold.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.