On a size-structured two-phase population model with infinite states-at-birth


Autoria(s): Farkas, József Z.; Hinow, Peter
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/03/2009

Resumo

In this work we introduce and analyze a linear size-structured population model with infinite states-at-birth. We model the dynamics of a population in which individuals have two distinct life-stages: an “active” phase when individuals grow, reproduce and die and a second “resting” phase when individuals only grow. Transition between these two phases depends on individuals’ size. First we show that the problem is governed by a positive quasicontractive semigroup on the biologically relevant state space. Then we investigate, in the framework of the spectral theory of linear operators, the asymptotic behavior of solutions of the model. We prove that the associated semigroup has, under biologically plausible assumptions, the property of asynchronous exponential growth.

Formato

15

179436 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/20323

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;851

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Equacions diferencials parcials #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint