On the complexity of the Whitehead minimization problem


Autoria(s): Roig, Abdó; Ventura, Enric; Weil, Pascal
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/11/2006

Resumo

The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem – to decide whether a word is an element of some basis of the free group – and the free factor problem can also be solved in polynomial time.

Formato

29

257583 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/5335

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;721

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Integrals singulars #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint