48 resultados para Nonparametric regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a nonparametric test in order to establish the level of accuracy of theforeign trade statistics of 17 Latin American countries when contrasted with the trade statistics of the main partners in 1925. The Wilcoxon Matched-Pairs Ranks test is used to determine whether the differences between the data registered by exporters and importers are meaningful, and if so, whether the differences are systematic in any direction. The paper tests for the reliability of the data registered for two homogeneous products, petroleum and coal, both in volume and value. The conclusion of the several exercises performed is that we cannot accept the existence of statistically significant differences between the data provided by the exporters and the registered by the importing countries in most cases. The qualitative historiography of Latin American describes its foreign trade statistics as mostly unusable. Our quantitative results contest this view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to compare the performance of twopredictive radiological models, logistic regression (LR) and neural network (NN), with five different resampling methods. One hundred and sixty-seven patients with proven calvarial lesions as the only known disease were enrolled. Clinical and CT data were used for LR and NN models. Both models were developed with cross validation, leave-one-out and three different bootstrap algorithms. The final results of each model were compared with error rate and the area under receiver operating characteristic curves (Az). The neural network obtained statistically higher Az than LR with cross validation. The remaining resampling validation methods did not reveal statistically significant differences between LR and NN rules. The neural network classifier performs better than the one based on logistic regression. This advantage is well detected by three-fold cross-validation, but remains unnoticed when leave-one-out or bootstrap algorithms are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We continue the development of a method for the selection of a bandwidth or a number of design parameters in density estimation. We provideexplicit non-asymptotic density-free inequalities that relate the $L_1$ error of the selected estimate with that of the best possible estimate,and study in particular the connection between the richness of the classof density estimates and the performance bound. For example, our methodallows one to pick the bandwidth and kernel order in the kernel estimatesimultaneously and still assure that for {\it all densities}, the $L_1$error of the corresponding kernel estimate is not larger than aboutthree times the error of the estimate with the optimal smoothing factor and kernel plus a constant times $\sqrt{\log n/n}$, where $n$ is the sample size, and the constant only depends on the complexity of the family of kernels used in the estimate. Further applications include multivariate kernel estimates, transformed kernel estimates, and variablekernel estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a common and tractable framework for analyzingdifferent definitions of fixed and random effects in a contant-slopevariable-intercept model. It is shown that, regardless of whethereffects (i) are treated as parameters or as an error term, (ii) areestimated in different stages of a hierarchical model, or whether (iii)correlation between effects and regressors is allowed, when the sameinformation on effects is introduced into all estimation methods, theresulting slope estimator is also the same across methods. If differentmethods produce different results, it is ultimately because differentinformation is being used for each methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows how recently developed regression-based methods for thedecomposition of health inequality can be extended to incorporateindividual heterogeneity in the responses of health to the explanatoryvariables. We illustrate our method with an application to the CanadianNPHS of 1994. Our strategy for the estimation of heterogeneous responsesis based on the quantile regression model. The results suggest that thereis an important degree of heterogeneity in the association of health toexplanatory variables which, in turn, accounts for a substantial percentageof inequality in observed health. A particularly interesting finding isthat the marginal response of health to income is zero for healthyindividuals but positive and significant for unhealthy individuals. Theheterogeneity in the income response reduces both overall health inequalityand income related health inequality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Logistic regression is included into the analysis techniques which are valid for observationalmethodology. However, its presence at the heart of thismethodology, and more specifically in physical activity and sports studies, is scarce. With a view to highlighting the possibilities this technique offers within the scope of observational methodology applied to physical activity and sports, an application of the logistic regression model is presented. The model is applied in the context of an observational design which aims to determine, from the analysis of use of the playing area, which football discipline (7 a side football, 9 a side football or 11 a side football) is best adapted to the child"s possibilities. A multiple logistic regression model can provide an effective prognosis regarding the probability of a move being successful (reaching the opposing goal area) depending on the sector in which the move commenced and the football discipline which is being played.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An e cient procedure for the blind inversion of a nonlinear Wiener system is proposed. We proved that the problem can be expressed as a problem of blind source separation in nonlinear mixtures, for which a solution has been recently proposed. Based on a quasi-nonparametric relative gradient descent, the proposed algorithm can perform e ciently even in the presence of hard distortions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a meta - analysis of 21 studies that estimate the elasticity of the price of waste collection demand upon waste quantities, a prior literature review having revealed that the price elasticity differs markedly. Based on a meta - regression with a total of 65 observations, we find no indication that municipal data give higher estimates for price elasticities than those associated with household data. Furthermore, there is no evidence that treating prices as exogenous underestimates the price elasticity. We find that much of the variation can be explained by sample size, the use of a weight - based as opposed to a volume - based pricing system, and the pricing of compostable waste. We also show that price elasticities determined in the USA and point estimations of elasticities are more elastic, but these effects are not robust to the changing of model specifications. Finally, our tests show that there is no evidence of publication bias while there is some evidence of the existence of genuine empirical effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two speed management policies were implemented in the metropolitan area of Barcelona aimed at reducing air pollution concentration levels. In 2008, the maximum speed limit was reduced to 80 km/h and, in 2009, a variable speed system was introduced on some metropolitan motorways. This paper evaluates whether such policies have been successful in promoting cleaner air, not only in terms of mean pollutant levels but also during high and low pollution episodes. We use a quantile regression approach for fixed effect panel data. We find that the variable speed system improves air quality with regard to the two pollutants considered here, being most effective when nitrogen oxide levels are not too low and when particulate matter concentrations are below extremely high levels. However, reducing the maximum speed limit from 120/100 km/h to 80 km/h has no effect – or even a slightly increasing effect –on the two pollutants, depending on the pollution scenario. Length: 32 pages

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most suitable method for estimation of size diversity is investigated. Size diversity is computed on the basis of the Shannon diversity expression adapted for continuous variables, such as size. It takes the form of an integral involving the probability density function (pdf) of the size of the individuals. Different approaches for the estimation of pdf are compared: parametric methods, assuming that data come from a determinate family of pdfs, and nonparametric methods, where pdf is estimated using some kind of local evaluation. Exponential, generalized Pareto, normal, and log-normal distributions have been used to generate simulated samples using estimated parameters from real samples. Nonparametric methods include discrete computation of data histograms based on size intervals and continuous kernel estimation of pdf. Kernel approach gives accurate estimation of size diversity, whilst parametric methods are only useful when the reference distribution have similar shape to the real one. Special attention is given for data standardization. The division of data by the sample geometric mean is proposedas the most suitable standardization method, which shows additional advantages: the same size diversity value is obtained when using original size or log-transformed data, and size measurements with different dimensionality (longitudes, areas, volumes or biomasses) may be immediately compared with the simple addition of ln k where kis the dimensionality (1, 2, or 3, respectively). Thus, the kernel estimation, after data standardization by division of sample geometric mean, arises as the most reliable and generalizable method of size diversity evaluation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer-reviewed