Fixed and random effects in Classical and Bayesian regression


Autoria(s): Rendón, Silvio
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

This paper proposes a common and tractable framework for analyzingdifferent definitions of fixed and random effects in a contant-slopevariable-intercept model. It is shown that, regardless of whethereffects (i) are treated as parameters or as an error term, (ii) areestimated in different stages of a hierarchical model, or whether (iii)correlation between effects and regressors is allowed, when the sameinformation on effects is introduced into all estimation methods, theresulting slope estimator is also the same across methods. If differentmethods produce different results, it is ultimately because differentinformation is being used for each methods.

Identificador

http://hdl.handle.net/10230/1154

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Labour, Public, Development and Health Economics #bayes #panel data #nuisance parameters #fixed effects #random effects
Tipo

info:eu-repo/semantics/workingPaper