Fixed and random effects in Classical and Bayesian regression
| Contribuinte(s) |
Universitat Pompeu Fabra. Departament d'Economia i Empresa |
|---|---|
| Data(s) |
15/09/2005
|
| Resumo |
This paper proposes a common and tractable framework for analyzingdifferent definitions of fixed and random effects in a contant-slopevariable-intercept model. It is shown that, regardless of whethereffects (i) are treated as parameters or as an error term, (ii) areestimated in different stages of a hierarchical model, or whether (iii)correlation between effects and regressors is allowed, when the sameinformation on effects is introduced into all estimation methods, theresulting slope estimator is also the same across methods. If differentmethods produce different results, it is ultimately because differentinformation is being used for each methods. |
| Identificador | |
| Idioma(s) |
eng |
| Direitos |
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| Palavras-Chave | #Labour, Public, Development and Health Economics #bayes #panel data #nuisance parameters #fixed effects #random effects |
| Tipo |
info:eu-repo/semantics/workingPaper |