A Hierarchical Approach for Multi-task Logistic Regression


Autoria(s): Lapedriza Garcia, Àgata; Masip Rodó, David; Vitrià, Jordi
Resumo

Peer-reviewed

In the statistical pattern recognition eld the number of samples to train a classifer is usually insu cient. Nevertheless, it has been shown that some learning domains can be divided in a set of related tasks, that can be simultaneously trained sharing information among the different tasks. This methodology is known as the multi-task learning paradigm. In this paper we propose a multi-task probabilistic logistic regressionmodel and develop a learning algorithm based in this framework, which can deal with the small sample size problem. Our experiments performedin two independent databases from the UCI and a multi-task face classification experiment show the improved accuracies of the multi-tasklearning approach with respect to the single task approach when using the same probabilistic model.

Identificador

http://hdl.handle.net/10609/1378

Idioma(s)

eng

Direitos

Consulteu les condicions d'ús d'aquest document en el repositori original:<a href="http://hdl.handle.net/10609/1378">http://hdl.handle.net/10609/1378</a>

Fonte

http://hdl.handle.net/10363/558

Palavras-Chave #Computer software -- Development #Pattern recognition systems #Logistic regression analysis #Programari -- Desenvolupament #Reconeixement de formes (Informàtica) #Anàlisi de regressió #Regressió logística #Software -- Desarrollo #Reconocimiento de formas (Informática) #Análisis de regresión logística
Tipo

Part of book or chapter of book