68 resultados para Nonnegative sine polynomial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Donada una aplicació racional en una varietat complexa, Bellon i Viallet van definit l’entropia algebraica d’aquesta aplicació i van provar que aquest valor és un invariant biracional. Un invariant biracional equivalent és el grau asimptòtic, grau dinàmic o complexitat, definit per Boukraa i Maillard. Aquesta noció és propera a la complexitat definida per Arnold. Conjecturalment, el grau asimptòtic satisfà una recurrència lineal amb coeficients enters. Aquesta conjectura ha estat provada en el cas polinòmic en el pla afí complex per Favre i Jonsson i resta oberta en per al cas projectiu global i per al cas local. L’estudi de l’arbre valoratiu de Favre i Jonsson ha resultat clau per resoldre la conjectura en el cas polinòmic en el pla afí complex. El beneficiari ha estudiat l’arbre valoratiu global de Favre i Jonsson i ha reinterpretat algunes nocions i resultats des d’un punt de vista més geomètric. Així mateix, ha estudiat la demostració de la conjectura de Bellon – Viallet en el cas polinòmic en el pla afí complex com a primer pas per trobar una demostració en el cas local i projectiu global en estudis futurs. El projecte inclou un estudi detallat de l'arbre valoratiu global des d'un punt de vista geomètric i els primers passos de la demostració de la conjectura de Bellon - Viallet en el cas polinòmic en el pla afí complex que van efectuar Favre i Jonsson.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Donada una aplicació racional en una varietat complexa, Bellon i Viallet van definit l’entropia algebraica d’aquesta aplicació i van provar que aquest valor és un invariant biracional. Un invariant biracional equivalent és el grau asimptòtic, grau dinàmic o complexitat, definit per Boukraa i Maillard. Aquesta noció és propera a la complexitat definida per Arnold. Conjecturalment, el grau asimptòtic satisfà una recurrència lineal amb coeficients enters. Aquesta conjectura ha estat provada en el cas polinòmic en el pla afí complex per Favre i Jonsson i resta oberta en per al cas projectiu global i per al cas local. L’estudi de l’arbre valoratiu de Favre i Jonsson ha resultat clau per resoldre la conjectura en el cas polinòmic en el pla afí complex. El beneficiari ha estudiat l’arbre valoratiu global de Favre i Jonsson i ha reinterpretat algunes nocions i resultats des d’un punt de vista més geomètric. Així mateix, ha estudiat la demostració de la conjectura de Bellon – Viallet en el cas polinòmic en el pla afí complex com a primer pas per trobar una demostració en el cas local i projectiu global en estudis futurs. El projecte inclou un estudi detallat de l'arbre valoratiu global des d'un punt de vista geomètric i els primers passos de la demostració de la conjectura de Bellon - Viallet en el cas polinòmic en el pla afí complex que van efectuar Favre i Jonsson.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the Heat Balance and Refined Integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t & 0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assume that the problem Qo is not solvable in polynomial time. For theories T containing a sufficiently rich part of true arithmetic we characterize T U {ConT} as the minimal extension of T proving for some algorithm that it decides Qo as fast as any algorithm B with the property that T proves that B decides Qo. Here, ConT claims the consistency of T. Moreover, we characterize problems with an optimal algorithm in terms of arithmetical theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the innite d-regular tree. ore recently Sly [8] (see also [1]) showed that this is optimal in the sense that if here is an FPRAS for the hard-core partition function on graphs of maximum egree d for activities larger than the critical activity on the innite d-regular ree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. his in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [7] to the case of general two-state anti-ferromagnetic spin systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All-optical label swapping (AOLS) forms a key technology towards the implementation of all-optical packet switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the way in which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This paper studies all-optical label stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this paper, an integer lineal program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This contribution compares existing and newly developed techniques for geometrically representing mean-variances-kewness portfolio frontiers based on the rather widely adapted methodology of polynomial goal programming (PGP) on the one hand and the more recent approach based on the shortage function on the other hand. Moreover, we explain the working of these different methodologies in detail and provide graphical illustrations. Inspired by these illustrations, we prove a generalization of the well-known two fund separation theorem from traditionalmean-variance portfolio theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: We address the problem of studying recombinational variations in (human) populations. In this paper, our focus is on one computational aspect of the general task: Given two networks G1 and G2, with both mutation and recombination events, defined on overlapping sets of extant units the objective is to compute a consensus network G3 with minimum number of additional recombinations. We describe a polynomial time algorithm with a guarantee that the number of computed new recombination events is within ϵ = sz(G1, G2) (function sz is a well-behaved function of the sizes and topologies of G1 and G2) of the optimal number of recombinations. To date, this is the best known result for a network consensus problem.Results: Although the network consensus problem can be applied to a variety of domains, here we focus on structure of human populations. With our preliminary analysis on a segment of the human Chromosome X data we are able to infer ancient recombinations, population-specific recombinations and more, which also support the widely accepted 'Out of Africa' model. These results have been verified independently using traditional manual procedures. To the best of our knowledge, this is the first recombinations-based characterization of human populations. Conclusion: We show that our mathematical model identifies recombination spots in the individual haplotypes; the aggregate of these spots over a set of haplotypes defines a recombinational landscape that has enough signal to detect continental as well as population divide based on a short segment of Chromosome X. In particular, we are able to infer ancient recombinations, population-specific recombinations and more, which also support the widely accepted 'Out of Africa' model. The agreement with mutation-based analysis can be viewed as an indirect validation of our results and the model. Since the model in principle gives us more information embedded in the networks, in our future work, we plan to investigate more non-traditional questions via these structures computed by our methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Error-correcting codes and matroids have been widely used in the study of ordinary secret sharing schemes. In this paper, the connections between codes, matroids, and a special class of secret sharing schemes, namely, multiplicative linear secret sharing schemes (LSSSs), are studied. Such schemes are known to enable multiparty computation protocols secure against general (nonthreshold) adversaries.Two open problems related to the complexity of multiplicative LSSSs are considered in this paper. The first one deals with strongly multiplicative LSSSs. As opposed to the case of multiplicative LSSSs, it is not known whether there is an efficient method to transform an LSSS into a strongly multiplicative LSSS for the same access structure with a polynomial increase of the complexity. A property of strongly multiplicative LSSSs that could be useful in solving this problem is proved. Namely, using a suitable generalization of the well-known Berlekamp–Welch decoder, it is shown that all strongly multiplicative LSSSs enable efficient reconstruction of a shared secret in the presence of malicious faults. The second one is to characterize the access structures of ideal multiplicative LSSSs. Specifically, the considered open problem is to determine whether all self-dual vector space access structures are in this situation. By the aforementioned connection, this in fact constitutes an open problem about matroid theory, since it can be restated in terms of representability of identically self-dual matroids by self-dual codes. A new concept is introduced, the flat-partition, that provides a useful classification of identically self-dual matroids. Uniform identically self-dual matroids, which are known to be representable by self-dual codes, form one of the classes. It is proved that this property also holds for the family of matroids that, in a natural way, is the next class in the above classification: the identically self-dual bipartite matroids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correspondence analysis has found extensive use in ecology, archeology, linguisticsand the social sciences as a method for visualizing the patterns of association in a table offrequencies or nonnegative ratio-scale data. Inherent to the method is the expression of the datain each row or each column relative to their respective totals, and it is these sets of relativevalues (called profiles) that are visualized. This relativization of the data makes perfect sensewhen the margins of the table represent samples from sub-populations of inherently differentsizes. But in some ecological applications sampling is performed on equal areas or equalvolumes so that the absolute levels of the observed occurrences may be of relevance, in whichcase relativization may not be required. In this paper we define the correspondence analysis ofthe raw unrelativized data and discuss its properties, comparing this new method to regularcorrespondence analysis and to a related variant of non-symmetric correspondence analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyses the robustness of Least-Squares Monte Carlo, a techniquerecently proposed by Longstaff and Schwartz (2001) for pricing Americanoptions. This method is based on least-squares regressions in which theexplanatory variables are certain polynomial functions. We analyze theimpact of different basis functions on option prices. Numerical resultsfor American put options provide evidence that a) this approach is veryrobust to the choice of different alternative polynomials and b) few basisfunctions are required. However, these conclusions are not reached whenanalyzing more complex derivatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct a weighted Euclidean distance that approximates any distance or dissimilarity measure between individuals that is based on a rectangular cases-by-variables data matrix. In contrast to regular multidimensional scaling methods for dissimilarity data, the method leads to biplots of individuals and variables while preserving all the good properties of dimension-reduction methods that are based on the singular-value decomposition. The main benefits are the decomposition of variance into components along principal axes, which provide the numerical diagnostics known as contributions, and the estimation of nonnegative weights for each variable. The idea is inspired by the distance functions used in correspondence analysis and in principal component analysis of standardized data, where the normalizations inherent in the distances can be considered as differential weighting of the variables. In weighted Euclidean biplots we allow these weights to be unknown parameters, which are estimated from the data to maximize the fit to the chosen distances or dissimilarities. These weights are estimated using a majorization algorithm. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing the matrix and displaying its rows and columns in biplots.