Strong isomorphism reductions in complexity theory


Autoria(s): Buss, Samuel R.; Chen, Yijia; Flum, Jörg; Friedman, Sy D.; Müller, Moritz
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

2011

Resumo

We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees.

Formato

26

272090 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/169477

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;1009

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Lògica matemàtica #Complexitat computacional #510 - Consideracions fonamentals i generals de les matemàtiques
Tipo

info:eu-repo/semantics/preprint