77 resultados para Extremal Problems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El 2001 Croàcia va posar en marxa la iniciativa destinada a afluixar un alt grau de centralització mitjançant l'ampliació dels mandats de les unitats locals i el canvi de les fonts de finançament de les funcions públiques. No obstant això, els passos inicials en el procés de descentralització no ha estat seguida per altres mesures de descentralització fiscal, i en conseqüència, el seu nivell s'ha mantingut pràcticament sense canvis. El treball es proposa elaborar els principals problemes i obstacles en relació amb l'aplicació efectiva del procés de descentralització i donar tres grups de propostes per a la descentralització: (i) la divisió dels poders obligatoris entre les diferents unitats locals, (ii) el canvi en el finançament i (Iii) modificar la divisió territorial del país.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of the EU accession of the East and Central European Countries have stressed the importance of neo-liberal institutionalism as an explanation for Member State preferences. In this paper it is argued that Member States’ preferences over Turkish EU accession are better explained by power politics and neo-realism. It seems therefore that Turkey’s way to the EU follows another path than the East and Central Countries. Turkish accession raises the question of the EU’s role in a uni-polar world order – whether the EU should develop into an independent actor on the world stage or not. However, when it comes to the interaction among the Member States in order to decide on when to open accession negotiations with Turkey the constitutive values of the EU seriously modify the outcome that pure power politics would have let to.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to analyse the main agreements on the EU’s External Action agreed within the European Convention and the IGC taking into account why, how and who reached the consensus on them. In other words, this paper will explore the principles followed in order to improve the instruments of the EU’s External Action such as authority, coherence, visibility, efficiency and credibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By anessential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur inmany compositional situations, such as household budget patterns, time budgets,palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful insuch situations. From consideration of such examples it seems sensible to build up amodel in two stages, the first determining where the zeros will occur and the secondhow the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globalization involves several facility location problems that need to be handled at large scale. Location Allocation (LA) is a combinatorial problem in which the distance among points in the data space matter. Precisely, taking advantage of the distance property of the domain we exploit the capability of clustering techniques to partition the data space in order to convert an initial large LA problem into several simpler LA problems. Particularly, our motivation problem involves a huge geographical area that can be partitioned under overall conditions. We present different types of clustering techniques and then we perform a cluster analysis over our dataset in order to partition it. After that, we solve the LA problem applying simulated annealing algorithm to the clustered and non-clustered data in order to work out how profitable is the clustering and which of the presented methods is the most suitable

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paltridge found reasonable values for the most significant climatic variables through maximizing the material transport part of entropy production by using a simple box model. Here, we analyse Paltridge's box model to obtain the energy and the entropy balance equations separately. Derived expressions for global entropy production, which is a function of the radiation field, and even its material transport component, are shown to be different from those used by Paltridge. Plausible climatic states are found at extrema of these parameters. Feasible results are also obtained by minimizing the radiation part of entropy production, in agreement with one of Planck's results, Finally, globally averaged values of the entropy flux of radiation and material entropy production are obtained for two dynamical extreme cases: an earth with uniform temperature, and an earth in radiative equilibrium at each latitudinal point

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we are proposing a methodology to determine the most efficient and least costly way of crew pairing optimization. We are developing a methodology based on algorithm optimization on Eclipse opensource IDE using the Java programming language to solve the crew scheduling problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black-box optimization problems (BBOP) are de ned as those optimization problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program). This paper is focussed on BBOPs that arise in the eld of insurance, and more speci cally in reinsurance problems. In this area, the complexity of the models and assumptions considered to de ne the reinsurance rules and conditions produces hard black-box optimization problems, that must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in BBOP, so new computational paradigms must be applied to solve these problems. In this paper we show the performance of two evolutionary-based techniques (Evolutionary Programming and Particle Swarm Optimization). We provide an analysis in three BBOP in reinsurance, where the evolutionary-based approaches exhibit an excellent behaviour, nding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When encountering a set of alternatives displayed in the form of a list, the decision maker usually determines a particular alternative, after which she stops checking the remaining ones, and chooses an alternative from those observed so far. We present a framework in which both decision problems are explicitly modeled, and axiomatically characterize a stop-and-choose rule which unifies position-biased successive choice and satisficing choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid (whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then the problem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In today’s competitive markets, the importance of goodscheduling strategies in manufacturing companies lead to theneed of developing efficient methods to solve complexscheduling problems.In this paper, we studied two production scheduling problemswith sequence-dependent setups times. The setup times areone of the most common complications in scheduling problems,and are usually associated with cleaning operations andchanging tools and shapes in machines.The first problem considered is a single-machine schedulingwith release dates, sequence-dependent setup times anddelivery times. The performance measure is the maximumlateness.The second problem is a job-shop scheduling problem withsequence-dependent setup times where the objective is tominimize the makespan.We present several priority dispatching rules for bothproblems, followed by a study of their performance. Finally,conclusions and directions of future research are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many areas of economics there is a growing interest in how expertise andpreferences drive individual and group decision making under uncertainty. Increasingly, we wish to estimate such models to quantify which of these drive decisionmaking. In this paper we propose a new channel through which we can empirically identify expertise and preference parameters by using variation in decisionsover heterogeneous priors. Relative to existing estimation approaches, our \Prior-Based Identification" extends the possible environments which can be estimated,and also substantially improves the accuracy and precision of estimates in thoseenvironments which can be estimated using existing methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The P-median problem is a classical location model par excellence . In this paper we, firstexamine the early origins of the problem, formulated independently by Louis Hakimi andCharles ReVelle, two of the fathers of the burgeoning multidisciplinary field of researchknown today as Facility Location Theory and Modelling. We then examine some of thetraditional heuristic and exact methods developed to solve the problem. In the third sectionwe analyze the impact of the model in the field. We end the paper by proposing new lines ofresearch related to such a classical problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a large and growing literature that studies the effects of weak enforcement institutions on economic performance. This literature has focused almost exclusively on primary markets, in which assets are issued and traded to improve the allocation of investment and consumption. The general conclusion is that weak enforcement institutions impair the workings of these markets, giving rise to various inefficiencies.But weak enforcement institutions also create incentives to develop secondary markets, in which the assets issued in primary markets are retraded. This paper shows that trading in secondary markets counteracts the effects of weak enforcement institutions and, in the absence of further frictions, restores efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid(whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then theproblem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.