61 resultados para quaternion algebra
Resumo:
We show that H-spaces with finitely generated cohomology, as an algebra or as an algebra over the Steenrod algebra, have homotopy exponents at all primes. This provides a positive answer to a question of Stanley.
Resumo:
We give sufficient conditions for homotopical localization functors to preserve algebras over coloured operads in monoidal model categories. Our approach encompasses a number of previous results about preservation of structures under localizations, such as loop spaces or infinite loop spaces, and provides new results of the same kind. For instance, under suitable assumptions, homotopical localizations preserve ring spectra (in the strict sense, not only up to homotopy), modules over ring spectra, and algebras over commutative ring spectra, as well as ring maps, module maps, and algebra maps. It is principally the treatment of module spectra and their maps that led us to the use of coloured operads (also called enriched multicategories) in this context.
Resumo:
This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defined by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincaré-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.
Resumo:
Aquest projecte proposa materials didàctics per a un nou plantejament de les assignatures de Matemàtiques dels primers cursos de Ciències Empresarials i d'Enginyeria Tècnica, més acord amb el procés de convergència europea, basat en la realització de projectes que anomenem “Tallers de Modelització Matemàtica” (TMM) en els quals: (1) Els alumnes parteixen de situacions i problemes reals per als quals han de construir per sí mateixos els models matemàtics més adients i, a partir de la manipulació adequada d’aquests models, poden obtenir la informació necessària per donar-los resposta. (2) El treball de construcció, experimentació i avaluació dels models es realitza amb el suport de la calculadora simbòlica Wiris i del full de càlcul Excel com a instruments “normalitzats” del treball matemàtic d’estudiants i professors. (3) S’adapten els programes de les assignatures de matemàtiques de primer curs per tal de poder-les associar a un petit nombre de Tallers que parteixen de situacions adaptades a cada titulació. L’assignatura de Matemàtiques per a les Ciències Empresarials s’articula entorn de dos tallers independents: “Matrius de transició” pel que fa a l’àlgebra lineal i “Previsió de vendes” per a la modelització funcional en una variable. L’assignatura de Matemàtiques per a l’Enginyeria s’articula entorn d’un únic taller, “Models de poblacions”, que abasta la majoria de continguts del curs: successions i models funcionals en una variable, àlgebra lineal i equacions diferencials. Un conjunt d’exercicis interactius basats en la calculadora simbòlica WIRIS (Wiris-player) serveix de suport per al treball tècnic imprescindible per al desenvolupament de les dues assignatures. L’experimentació d’aquests tallers durant 2 cursos consecutius (2006/07 i 2007/08) en dues universitats catalanes (URL i UAB) ha posat en evidència tant els innegables avantatges del nou dispositiu docent per a l’aprenentatge dels estudiants, així com les restriccions institucionals que actualment dificulten la seva gestió i difusió.
Resumo:
If A is a unital quasidiagonal C*-algebra, we construct a generalized inductive limit BA which is simple, unital and inherits many structural properties from A. If A is the unitization of a non-simple purely infinite algebra (e.g., the cone over a Cuntz algebra), then BA is tracially AF which, among other things, lends support to a conjecture of Toms.
Resumo:
We show that nuclear C*-algebras have a re ned version of the completely positive approximation property, in which the maps that approximately factorize through finite dimensional algebras are convex combinations of order zero maps. We use this to show that a separable nuclear C*-algebra A which is closely contained in a C*-algebra B embeds into B.
Resumo:
Let A be a simple, separable C*-algebra of stable rank one. We prove that the Cuntz semigroup of C (T, A) is determined by its Murray-von Neumann semigroup of projections and a certain semigroup of lower semicontinuous functions (with values in the Cuntz semigroup of A). This result has two consequences. First, specializing to the case that A is simple, finite, separable and Z-stable, this yields a description of the Cuntz semigroup of C (T, A) in terms of the Elliott invariant of A. Second, suitably interpreted, it shows that the Elliott functor and the functor defined by the Cuntz semigroup of the tensor product with the algebra of continuous functions on the circle are naturally equivalent.
Resumo:
Given positive integers n and m, we consider dynamical systems in which n copies of a topological space is homeomorphic to m copies of that same space. The universal such system is shown to arise naturally from the study of a C*-algebra we denote by Om;n, which in turn is obtained as a quotient of the well known Leavitt C*-algebra Lm;n, a process meant to transform the generating set of partial isometries of Lm;n into a tame set. Describing Om;n as the crossed-product of the universal (m; n) -dynamical system by a partial action of the free group Fm+n, we show that Om;n is not exact when n and m are both greater than or equal to 2, but the corresponding reduced crossed-product, denoted Or m;n, is shown to be exact and non-nuclear. Still under the assumption that m; n &= 2, we prove that the partial action of Fm+n is topologically free and that Or m;n satisfies property (SP) (small projections). We also show that Or m;n admits no finite dimensional representations. The techniques developed to treat this system include several new results pertaining to the theory of Fell bundles over discrete groups.
Resumo:
We define equivariant semiprojectivity for C* -algebras equipped with actions of compact groups. We prove that the following examples are equivariantly semiprojective: A. Arbitrary finite dimensional C*-algebras with arbitrary actions of compact groups. - B. The Cuntz algebras Od and extended Cuntz algebras Ed, for finite d, with quasifree actions of compact groups. - C. The Cuntz algebra O∞ with any quasifree action of a finite group. For actions of finite groups, we prove that equivariant semiprojectivity is equiv- alent to a form of equivariant stability of generators and relations. We also prove that if G is finite, then C*(G) is graded semiprojective.
Resumo:
The generator problem was posed by Kadison in 1967, and it remains open until today. We provide a solution for the class of C*-algebras absorbing the Jiang-Su algebra Z tensorially. More precisely, we show that every unital, separable, Z-stable C*-algebra A is singly generated, which means that there exists an element x є A that is not contained in any proper sub-C*- algebra of A. To give applications of our result, we observe that Z can be embedded into the reduced group C*-algebra of a discrete group that contains a non-cyclic, free subgroup. It follows that certain tensor products with reduced group C*-algebras are singly generated. In particular, C*r (F ∞) ⨂ C*r (F ∞) is singly generated.
Resumo:
Actualment l'ús de la criptografia ha arribat a ser del tot generalitzat, tant en els processos de transmissió i intercanvi segur d'informació, com en l'emmagatzematge secret de dades. Es tracta d'una disciplina els fonaments teòrics de la qual són en l'Àlgebra i en el Càlcul de Probabilitats. La programació d'interfícies gràfiques s'ha realitzat en Java i amb la manipulació, tot i que molt elemental, de documents XML.
Resumo:
In this article we review first some of the possibilities in which the notions of Fo lner sequences and quasidiagonality have been applied to spectral approximation problems. We construct then a canonical Fo lner sequence for the crossed product of a concrete C* -algebra and a discrete amenable group. We apply our results to the rotation algebra (which contains interesting operators like almost Mathieu operators or periodic magnetic Schrödinger operators on graphs) and the C* -algebra generated by bounded Jacobi operators.
Resumo:
Our essay aims at studying suitable statistical methods for the clustering ofcompositional data in situations where observations are constituted by trajectories ofcompositional data, that is, by sequences of composition measurements along a domain.Observed trajectories are known as “functional data” and several methods have beenproposed for their analysis.In particular, methods for clustering functional data, known as Functional ClusterAnalysis (FCA), have been applied by practitioners and scientists in many fields. To ourknowledge, FCA techniques have not been extended to cope with the problem ofclustering compositional data trajectories. In order to extend FCA techniques to theanalysis of compositional data, FCA clustering techniques have to be adapted by using asuitable compositional algebra.The present work centres on the following question: given a sample of compositionaldata trajectories, how can we formulate a segmentation procedure giving homogeneousclasses? To address this problem we follow the steps described below.First of all we adapt the well-known spline smoothing techniques in order to cope withthe smoothing of compositional data trajectories. In fact, an observed curve can bethought of as the sum of a smooth part plus some noise due to measurement errors.Spline smoothing techniques are used to isolate the smooth part of the trajectory:clustering algorithms are then applied to these smooth curves.The second step consists in building suitable metrics for measuring the dissimilaritybetween trajectories: we propose a metric that accounts for difference in both shape andlevel, and a metric accounting for differences in shape only.A simulation study is performed in order to evaluate the proposed methodologies, usingboth hierarchical and partitional clustering algorithm. The quality of the obtained resultsis assessed by means of several indices
Resumo:
La teor\'\ı a de Morales–Ramis es la teor\'\ı a de Galois en el contextode los sistemas din\'amicos y relaciona dos tipos diferentes de integrabilidad:integrabilidad en el sentido de Liouville de un sistema hamiltonianoe integrabilidad en el sentido de la teor\'\ı a de Galois diferencial deuna ecuaci\'on diferencial. En este art\'\i culo se presentan algunas aplicacionesde la teor\'\i a de Morales–Ramis en problemas de no integrabilidadde sistemas hamiltonianos cuya ecuaci\'on variacional normal a lo largode una curva integral particular es una ecuaci\'on diferencial lineal desegundo orden con coeficientes funciones racionales. La integrabilidadde la ecuaci\'on variacional normal es analizada mediante el algoritmode Kovacic.
Resumo:
We consider the joint visualization of two matrices which have common rowsand columns, for example multivariate data observed at two time pointsor split accord-ing to a dichotomous variable. Methods of interest includeprincipal components analysis for interval-scaled data, or correspondenceanalysis for frequency data or ratio-scaled variables on commensuratescales. A simple result in matrix algebra shows that by setting up thematrices in a particular block format, matrix sum and difference componentscan be visualized. The case when we have more than two matrices is alsodiscussed and the methodology is applied to data from the InternationalSocial Survey Program.