Dynamical systems of type (m,n) and their C*-algebras


Autoria(s): Ara i Bertrán, Pere; Exel, Ruy; Katsura, Takeshi
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

2011

Resumo

Given positive integers n and m, we consider dynamical systems in which n copies of a topological space is homeomorphic to m copies of that same space. The universal such system is shown to arise naturally from the study of a C*-algebra we denote by Om;n, which in turn is obtained as a quotient of the well known Leavitt C*-algebra Lm;n, a process meant to transform the generating set of partial isometries of Lm;n into a tame set. Describing Om;n as the crossed-product of the universal (m; n) -dynamical system by a partial action of the free group Fm+n, we show that Om;n is not exact when n and m are both greater than or equal to 2, but the corresponding reduced crossed-product, denoted Or m;n, is shown to be exact and non-nuclear. Still under the assumption that m; n &= 2, we prove that the partial action of Fm+n is topologically free and that Or m;n satisfies property (SP) (small projections). We also show that Or m;n admits no finite dimensional representations. The techniques developed to treat this system include several new results pertaining to the theory of Fell bundles over discrete groups.

Formato

38 p.

Identificador

http://hdl.handle.net/2072/182585

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;1050

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Sistemes dinàmics diferenciables #Grups lliures #C*-àlgebres #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint