178 resultados para Quadratic Assignment Problem (QAP)
Resumo:
We study quadratic perturbations of the integrable system (1+x)dH; where H =(x²+y²)=2: We prove that the first three Melnikov functions associated to the perturbed system give rise at most to three limit cycles.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Counter automata are more powerful versions of finite state automata where addition and subtraction operations are permitted on a set of n integer registers, called counters. We show that the word problem of Zn is accepted by a nondeterministic m-counter automaton if and only if m &= n.
Resumo:
The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem – to decide whether a word is an element of some basis of the free group – and the free factor problem can also be solved in polynomial time.
Resumo:
Conflict among member states regarding the distribution of net financial burdens has been allowed to contaminate the entire design of the EU budget with very negative consequences in terms of equity, efficiency and transparency. To get around this problem and pave the way for a substantive budget reform, we propose to decouple distributional negotiations from the rest of the budget process by linking member state net balances in a rigid manner to relative prosperity. This would be achieved through the introduction of a system of compensating horizontal transfers that would take to its logical conclusion the Commission's proposal for a generalized compensation mechanism. We discuss the impact of the proposed scheme on member states? incentives and illustrate its financial implications using revenue and expenditure projections for 2013 that are based on the current Financial Perspectives and Own Resources Decision.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Projecte de recerca elaborat a partir d’una estada a la School of Mathematics and Statistics de la University of Plymouth, United Kingdom, entre abril juliol del 2007.Aquesta investigació és encara oberta i la memòria que presento constitueix un informe de la recerca que estem duent a terme actualment. En aquesta nota estudiem els centres isòcrons dels sistemes Hamiltonians analítics, parant especial atenció en el cas polinomial. Ens centrem en els anomenats quadratic-like Hamiltonian systems. Diverses propietats dels centres isòcrons d'aquest tipus de sistemes van ser donades a [A. Cima, F. Mañosas and J. Villadelprat, Isochronicity for several classes of Hamiltonian systems, J. Di®erential Equations 157 (1999) 373{413]. Aquell article estava centrat principalment en el cas en que A; B i C fossin funcions analítiques. El nostre objectiu amb l'estudi que estem duent a terme és investigar el cas en el que aquestes funcions són polinomis. En aquesta nota formulem una conjectura concreta sobre les propietats algebraiques que venen forçades per la isocronia del centre i provem alguns resultats parcials.
Resumo:
Guba and Sapir asked, in their joint paper [8], if the simultaneous conjugacy problem was solvable in Diagram Groups or, at least, for Thompson's group F. We give an elementary proof for the solution of the latter question. This relies purely on the description of F as the group of piecewise linear orientation-preserving homeomorphisms of the unit. The techniques we develop allow us also to solve the ordinary conjugacy problem as well, and we can compute roots and centralizers. Moreover, these techniques can be generalized to solve the same questions in larger groups of piecewise-linear homeomorphisms.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove existence theorems for the Dirichlet problem for hypersurfaces of constant special Lagrangian curvature in Hadamard manifolds. The first results are obtained using the continuity method and approximation and then refined using two iterations of the Perron method. The a-priori estimates used in the continuity method are valid in any ambient manifold.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We establish existence and non-existence results to the Brezis-Nirenberg type problem involving the square root of the Laplacian in a bounded domain with zero Dirichlet boundary condition.
Resumo:
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.
Resumo:
The division problem consists of allocating a given amount of an homogeneous and perfectly divisible good among a group of agents with single-peaked preferences on the set of their potential shares. A rule proposes a vector of shares for each division problem. The literature has implicitly assumed that agents will find acceptable any share they are assigned to. In this paper we consider the division problem when agents' participation is voluntary. Each agent has an idiosyncratic interval of acceptable shares where his preferences are single-peaked. A rule has to propose to each agent either to not participate or an acceptable share because otherwise he would opt out and this would require to reassign some of the remaining agents' shares. We study a subclass of efficient and consistent rules and characterize extensions of the uniform rule that deal explicitly with agents' voluntary participation.