71 resultados para Generalized Hypergeometric Function
Resumo:
There is a relation between the generalized Property R Conjecture and the Schoenflies Conjecture that suggests a new line of attack on the latter. The new approach gives a quick proof of the genus 2 Schoenflies Conjecture and suffices to prove the genus 3 case, even in the absence of new progress on the generalized Property R Conjecture.
Resumo:
In this paper, a new class of generalized backward doubly stochastic differential equations is investigated. This class involves an integral with respect to an adapted continuous increasing process. A probabilistic representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann boundary condition is given.
Resumo:
R.P. Boas has found necessary and sufficient conditions of belonging of function to Lipschitz class. From his findings it turned out, that the conditions on sine and cosine coefficients for belonging of function to Lip α(0 & α & 1) are the same, but for Lip 1 are different. Later his results were generalized by many authors in the viewpoint of generalization of condition on the majorant of modulus of continuity. The aim of this paper is to obtain Boas-type theorems for generalized Lipschitz classes. To define generalized Lipschitz classes we use the concept of modulus of smoothness of fractional order.
Resumo:
We study quadratic perturbations of the integrable system (1+x)dH; where H =(x²+y²)=2: We prove that the first three Melnikov functions associated to the perturbed system give rise at most to three limit cycles.
Resumo:
We construct generating trees with with one, two, and three labels for some classes of permutations avoiding generalized patterns of length 3 and 4. These trees are built by adding at each level an entry to the right end of the permutation, which allows us to incorporate the adjacency condition about some entries in an occurrence of a generalized pattern. We use these trees to find functional equations for the generating functions enumerating these classes of permutations with respect to different parameters. In several cases we solve them using the kernel method and some ideas of Bousquet-Mélou [2]. We obtain refinements of known enumerative results and find new ones.
Resumo:
We study the existence theory for parabolic variational inequalities in weighted L2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coeficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs.
Resumo:
There is recent interest in the generalization of classical factor models in which the idiosyncratic factors are assumed to be orthogonal and there are identification restrictions on cross-sectional and time dimensions. In this study, we describe and implement a Bayesian approach to generalized factor models. A flexible framework is developed to determine the variations attributed to common and idiosyncratic factors. We also propose a unique methodology to select the (generalized) factor model that best fits a given set of data. Applying the proposed methodology to the simulated data and the foreign exchange rate data, we provide a comparative analysis between the classical and generalized factor models. We find that when there is a shift from classical to generalized, there are significant changes in the estimates of the structures of the covariance and correlation matrices while there are less dramatic changes in the estimates of the factor loadings and the variation attributed to common factors.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.
Resumo:
It has been recently found that a number of systems displaying crackling noise also show a remarkable behavior regarding the temporal occurrence of successive events versus their size: a scaling law for the probability distributions of waiting times as a function of a minimum size is fulfilled, signaling the existence on those systems of self-similarity in time-size. This property is also present in some non-crackling systems. Here, the uncommon character of the scaling law is illustrated with simple marked renewal processes, built by definition with no correlations. Whereas processes with a finite mean waiting time do not fulfill a scaling law in general and tend towards a Poisson process in the limit of very high sizes, processes without a finite mean tend to another class of distributions, characterized by double power-law waiting-time densities. This is somehow reminiscent of the generalized central limit theorem. A model with short-range correlations is not able to escape from the attraction of those limit distributions. A discussion on open problems in the modeling of these properties is provided.
Resumo:
A new expression for the characteristic function of log-spot in Heston model is presented. This expression more clearly exhibits its properties as an analytic characteristic function and allows us to compute the exact domain of the moment generating function. This result is then applied to the volatility smile at extreme strikes and to the control of the moments of spot. We also give a factorization of the moment generating function as product of Bessel type factors, and an approximating sequence to the law of log-spot is deduced.
Resumo:
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.
Resumo:
We study two cooperative solutions of a market with indivisible goods modeled as a generalized assignment game: Set-wise stability and Core. We first establish that the Set-wise stable set is contained in the Core and it contains the non-empty set of competitive equilibrium payoffs. We then state and prove three limit results for replicated markets. First, the sequence of Cores of replicated markets converges to the set of competitive equilibrium payoffs when the number of replicas tends to infinity. Second, the Set-wise stable set of a two-fold replicated market already coincides with the set of competitive equilibrium payoffs. Third, for any number of replicas there is a market with a Core payoff that is not a competitive equilibrium payoff.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.