28 resultados para FRACTAL DIMENSION
Resumo:
The classical binary classification problem is investigatedwhen it is known in advance that the posterior probability function(or regression function) belongs to some class of functions. We introduceand analyze a method which effectively exploits this knowledge. The methodis based on minimizing the empirical risk over a carefully selected``skeleton'' of the class of regression functions. The skeleton is acovering of the class based on a data--dependent metric, especiallyfitted for classification. A new scale--sensitive dimension isintroduced which is more useful for the studied classification problemthan other, previously defined, dimension measures. This fact isdemonstrated by performance bounds for the skeleton estimate in termsof the new dimension.
Resumo:
The set of optimal matchings in the assignment matrix allows to define a reflexive and symmetric binary relation on each side of the market, the equal-partner binary relation. The number of equivalence classes of the transitive closure of the equal-partner binary relation determines the dimension of the core of the assignment game. This result provides an easy procedure to determine the dimension of the core directly from the entries of the assignment matrix and shows that the dimension of the core is not as much determined by the number of optimal matchings as by their relative position in the assignment matrix.
Resumo:
Through an imaginary change of coordinates, the ordinary Poincar algebra is shown to be a subalgebra of the Galilei one in four space dimensions. Through a subsequent contraction the remaining Lie generators are eliminated in a natural way. An application of these results to connect Galilean and relativistic field equations is discussed.
Resumo:
Real-world images are complex objects, difficult to describe but at the same time possessing a high degree of redundancy. A very recent study [1] on the statistical properties of natural images reveals that natural images can be viewed through different partitions which are essentially fractal in nature. One particular fractal component, related to the most singular (sharpest) transitions in the image, seems to be highly informative about the whole scene. In this paper we will show how to decompose the image into their fractal components.We will see that the most singular component is related to (but not coincident with) the edges of the objects present in the scenes. We will propose a new, simple method to reconstruct the image with information contained in that most informative component.We will see that the quality of the reconstruction is strongly dependent on the capability to extract the relevant edges in the determination of the most singular set.We will discuss the results from the perspective of coding, proposing this method as a starting point for future developments.
Resumo:
The set of optimal matchings in the assignment matrix allows to define a reflexive and symmetric binary relation on each side of the market, the equal-partner binary relation. The number of equivalence classes of the transitive closure of the equal-partner binary relation determines the dimension of the core of the assignment game. This result provides an easy procedure to determine the dimension of the core directly from the entries of the assignment matrix and shows that the dimension of the core is not as much determined by the number of optimal matchings as by their relative position in the assignment matrix.
Resumo:
Experiments are reported on fractal copper electrodeposits. An electrochemical cell was designed in order to obtain a potentiostatic control on the quasi-two-dimensional electrodeposition process. The aim was focused on the analysis of the growth rate of the electrodeposited phase, in particular its dependence on the electrode potential and electrolyte concentration.
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.
Resumo:
This paper aims to estimate the impact of research collaboration with partners in different geographical areas on innovative performance. By using the Spanish Technological Innovation Panel, this study provides evidence that the benefits of research collaboration differ across different dimensions of the geography. We find that the impact of extra-European cooperation on innovation performance is larger than that of national and European cooperation, indicating that firms tend to benefit more from interaction with international partners as a way to access new technologies or specialized and novel knowledge that they are unable to find locally. We also find evidence of the positive role played by absorptive capacity, concluding that it implies a higher premium on the innovation returns to cooperation in the international case and mainly in the European one.
Resumo:
The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions, the deterministic nature of the chaotic oscillations is clearly identified.
Resumo:
We present new analytical tools able to predict the averaged behavior of fronts spreading through self-similar spatial systems starting from reaction-diffusion equations. The averaged speed for these fronts is predicted and compared with the predictions from a more general equation (proposed in a previous work of ours) and simulations. We focus here on two fractals, the Sierpinski gasket (SG) and the Koch curve (KC), for two reasons, i.e. i) they are widely known structures and ii) they are deterministic fractals, so the analytical study of them turns out to be more intuitive. These structures, despite their simplicity, let us observe several characteristics of fractal fronts. Finally, we discuss the usefulness and limitations of our approa
Resumo:
The fusion of knowledge, the interrelationship of disciplines and, finally, the interaction of learning fields, provides new challenges for an auto denominated global society. The contemporary value of landscape, linked to the patent commodification of culture, the commercial construction of identities, the triumph of inauthenticity, of the induced representation or the economy of symbolism, open up great prospects for studying the symbolic value of landscape. The rapprochement of geographical praxis to the study of space intangibles, linked to the discovery of emotional geographies, besides the growing interest of communicational sciences on the territorial discourse, allow us to envisage a communicative study of landscape based on a fusion of geographical and communicational knowledge. The balancing of the variables: geography, landscape, emotion and communication, enables the progress towards analysing the emotionalisation of space to discern its intangible value, which emerges from the application of different communication techniques.