17 resultados para phage-typing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phage display technology is a powerful platform for the generation of highly specific human monoclonal antibodies (Abs) with potential use in clinical applications. Moreover, this technique has also proven to be a reliable approach in identifying and validating new cancer-related targets. For scientific or medical applications, different types of Ab libraries can be constructed. The use of Fab Immune libraries allows the production of high quality and affinity antigen-specific Abs. In this work, two immune human phage display IgG Fab libraries were generated from the Ab repertoire of 16 breast cancer patients, in order to obtain a tool for the development of new therapeutic Abs for breast cancer, a condition that has great impact worldwide. The generated libraries are estimated to contain more than 108 independent clones and a diversity over 90%. Libraries validation was pursued by selection against BSA, a foreign and highly immunogenic protein, and HER2, a well established cancer target. Preliminary results suggested that phage pools with affinity for these antigens were selected and enriched. Individual clones were isolated, however, it was not possible to obtain enough data to further characterize them. Selection against the DLL1 protein was also performed, once it is a known ligand of the Notch pathway, whose deregulation is associated to breast cancer, making it an interesting target for the generation of function-blocking Abs. Selection resulted in the isolation of a clone with low affinity and Fab expression levels. The validation process was not completed and further effort will have to be put in this task in the future. Although immune libraries concept implies limited applicability, the library reported here has a wide range of use possibilities, since it was not restrained to a single antigen but instead thought to be used against any breast cancer associated target, thus being a valuable tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch is a conserved signalling pathway, which plays a crucial role in a multiple cellular processes such as stem cell self-renewal, cell division, proliferation and apoptosis. In mammalian, four Notch receptors and five ligands are described, where interaction is achieved through their extracellular domains, leading to a transcription activation of different target genes. Increased expression of Notch ligands has been detected in several types of cancer, including breast cancer suggesting that these proteins represent possible therapeutic targets. The goal of this work was to generate quality protein targets and, by phage display technology, select function-blocking antibodies specific for Notch ligands. Phage display is a powerful technique that allows the generation of highly specific antibodies to be used for therapeutics, and it has also proved to be a reliable approach in identifying and validating new cancer-related targets. Also, we aimed at solving the tri-dimensional structure of the Notch ligands alone and in complex with selected antibodies. In this work, the initial phase focused on the optimization of the expression and purification of a human Delta-like 1 ligand mutant construct (hDLL1-DE3), by refolding from E. coli inclusion bodies. To confirm the biological activity of the produced recombinant protein cellular functional studies were performed, revealing that treatment with hDLL1-DE3 protein led to a modulation of Notch target genes. In a second stage of this study, Antibody fragments (Fabs) specific for hDLL1-DE3 were generated by phage display, using the produced protein as target, in which one good Fab candidate was selected to determine the best expression conditions. In parallel, multiple crystallization conditions were tested with hDLL1-DE3, but so far none led to positive results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PLos One, 4(11): ARTe7722

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUMO:Staphylococcus aureus é um dos principais agentes patogénicos humanos, sendo frequentemente associado a infecções nosocomiais e infecções na comunidade. A prevalência de S. aureus resistentes à meticilina (MRSA) em hospitais portugueses é uma das mais elevadas da Europa e tem sido caracterizada extensivamente; contrariamente, a prevalência e epidemiologia de MRSA na comunidade em Portugal não tem sido devidamente seguida. Com o objectivo de compreender as causas possíveis do aumento na frequência de MRSA num dos maiores hospitais centrais portugueses (HSM) ao longo de 17 anos, isolados de MRSA recolhidos em 1993 (n=54) e 2010 (n=180) de pus, sangue e urina foram analisados por PFGE, MLST, tipagem do spa e tipagem de SCCmec. Os resultados mostraram que ocorreu uma mudança global nos tipos clonais predominantes, onde o clone ST22-IVh substituiu os clones, ST239-IIIvar e ST247-I, representando mais de 70% da população actual. Além disso, entre 1993 e 2010 verificou-se um aumento na diversidade genética dos tipos clonais de MRSA. Para determinar a frequência e a natureza clonal de MRSA e S. aureus sensíveis à meticilina (MSSA) isolados de infecções de pele e tecidos moles (SSTI) em pessoas que frequentam centros de saúde em Portugal, 73 amostras foram recolhidas em nove centros de saúde (Rede Médicos Sentinela). Isolou-se um total de 40 S. aureus (55%), dos quais 17,5% eram MRSA. Os isolados de MRSA pertenciam aos clones ST22-IVh (n=4), ST5-IVc (n=2) e ST105-II (n=1), que foram descritos neste estudo como sendo clones de origem hospitalar. Os nossos resultados sugerem que o aumento da frequência de MRSA no HSM pode estar associado à emergência de um clone de MRSA com maior capacidade epidémica. Além disso, verificámos que a principal causa de SSTI em pessoas que frequentam centros de saúde em Portugal são MRSA de origem hospitalar e não MRSA associados à comunidade.------ABSTRACT: Staphylococcus aureus is one of the most important human pathogens, being a major cause of infections worldwide both in the hospital and in the community. In Portugal, the prevalence of methicillin resistant S. aureus (MRSA) in hospitals is one of the highest in Europe and has been characterized extensively; contrarily the prevalence and epidemiology of MRSA in the community has not been followed in a meaningful way. To understand the epidemiological events that could explain a steep increase in MRSA frequency in a major Portuguese central hospital (HSM) within a 17 year period, two MRSA collections recovered in 1993 (n=54) and 2010 (n=180) from pus, blood and urine were analyzed by PFGE, MLST, spa and SCCmec typing. The results showed that a major clonal shift occurred, wherein ST22-IVh clone has replaced the previous ST239-IIIvar and ST247-I clones and accounts for more than 70% of the present population. Moreover, an increase in genetic diversity of MRSA clonal types was observed between the two study periods. With the aim of determining the frequency and clonal nature of MRSA and methicillin-susceptible S. aureus (MSSA) causing skin and soft tissue infections (SSTI) in patients attending healthcare centers in Portugal, 73 samples were collected from nine healthcare centers (Medicos Sentinela Network). A total of 40 S. aureus were isolated, accounting for 55% of the SSTI, of which 17.5% were MRSA. MRSA isolates belonged to ST22-IVh (n=4), ST5-IVc (n=2) and ST105-II (n=1) that have also been described in the hospital in an equivalent period. Our results suggest that the increase in MRSA frequency in HSM may be associated to the emergence of a MRSA clone with higher epidemic potential. Moreover, we propose that the spillover of MRSA from the hospital rather than community-associated-MRSA was the main cause of SSTI in persons attending healthcare centers in Portugal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Biologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in Biology/ Molecular Biology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein Sci. 2009 Mar;18(3):619-28. doi: 10.1002/pro.69.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Microbiologia Médica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Microbiologia Médica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-to-cell communication is required for many biological processes in development and adult life. One of the most common systems utilized by a wide range of eukaryotes is the Notch signalling pathway. Four Notch receptors and five ligands have been identified in mammals that interact via their extracellular domains leading to transcription activation. Studies have shown that the Notch ligands expression is undetectable in normal breast tissues, but moderate to high expression has been detected in breast cancer. Thus, any of the Notch1 ligands can be studied as possible therapeutic targets for breast cancer. To study Notch pathway proteins there is the need to obtain stable protein solutions. E. coli is the host of excellence for recombinant proteins for the ease of use, fast growth and high cell densities. However, the expression of mammalian proteins in such systems may overwhelm the bacterial cellular machinery, which does not possess the ability for post-translational modifications, or dedicated compartments for protein synthesis. Mammalian cells are therefore preferred, despite their technical and financial increased demands. We aim to determine the best expression and purification conditions for the different ligand protein constructs, to develop specific function-blocking antibodies using the Phage Display technology. Moreover, we propose to crystallize the Notch1 ligands alone and in complex with the phage display selected antibodies, unveiling molecular details. hJag2DE3 and hDll1DE6 proteins were purified from refolded inclusion bodies or mammalian cell culture supernatants, respectively, and purity was confirmed by SDS-PAGE (>95%). Protein produced in mammalian cells showed to be more stable, apparently with the physiological disulfide pattern, contrary to what was observed in the refolded protein. Several nano-scale crystallization experiments were set up in 96-well plates, but no positive result was obtained. We will continue to pursue for the best expression for the Notch ligand constructs in both expression systems.