10 resultados para object agreement
em Instituto Politécnico do Porto, Portugal
Resumo:
Demands for functionality enhancements, cost reductions and power savings clearly suggest the introduction of multiand many-core platforms in real-time embedded systems. However, when compared to uni-core platforms, the manycores experience additional problems, namely the lack of scalable coherence mechanisms and the necessity to perform migrations. These problems have to be addressed before such systems can be considered for integration into the realtime embedded domain. We have devised several agreement protocols which solve some of the aforementioned issues. The protocols allow the applications to plan and organise their future executions both temporally and spatially (i.e. when and where the next job will be executed). Decisions can be driven by several factors, e.g. load balancing, energy savings and thermal issues. All presented protocols are analytically described, with the particular emphasis on their respective real-time behaviours and worst-case performance. The underlying assumptions are based on the multi-kernel model and the message-passing paradigm, which constitutes the communication between the interacting instances.
Resumo:
Dynamical systems theory in this work is used as a theoretical language and tool to design a distributed control architecture for a team of three robots that must transport a large object and simultaneously avoid collisions with either static or dynamic obstacles. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constraints are modeled as attractors (i.e. asymptotic stable states) of the behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotical stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
In this paper dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for a team of two robots that must transport a large object and simultaneously avoid collisions with obstacles (either static or dynamic). This work extends the previous work with two robots (see [1] and [5]). However here we demonstrate that it’s possible to simplify the architecture presented in [1] and [5] and reach an equally stable global behavior. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constrains are modeled as attractors (i.e. asymptotic stable states) of a behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotic stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.
Resumo:
This paper reports on the creation of an interface for 3D virtual environments, computer-aided design applications or computer games. Standard computer interfaces are bound to 2D surfaces, e.g., computer mouses, keyboards, touch pads or touch screens. The Smart Object is intended to provide the user with a 3D interface by using sensors that register movement (inertial measurement unit), touch (touch screen) and voice (microphone). The design and development process as well as the tests and results are presented in this paper. The Smart Object was developed by a team of four third-year engineering students from diverse scientific backgrounds and nationalities during one semester.
Resumo:
The present generation of eLearning platforms values the interchange of learning objects standards. Nevertheless, for specialized domains these standards are insufficient to fully describe all the assets, especially when they are used as input for other eLearning services. To address this issue we extended an existing learning objects standard to the particular requirements of a specialized domain, namely the automatic evaluation of programming problems. The focus of this paper is the definition of programming problems as learning objects. We introduce a new schema to represent metadata related to automatic evaluation that cannot be conveniently represented using existing standards, such as: the type of automatic evaluation; the requirements of the evaluation engine; or the roles of different assets - tests cases, program solutions, etc. This new schema is being used in an interoperable repository of learning objects, called crimsonHex.
Resumo:
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
Resumo:
Trabalho de Projeto de Mestrado apresentado ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Empreendedorismo e Internacionalização sob orientação da Doutora Celsa Maria Carvalho Machado
Resumo:
Dissertação de Mestrado em Solicitaria