55 resultados para data-mining application
Resumo:
Tese submetida à Universidade Portucalense para obtenção do grau de Mestre em Informática, elaborada sob a orientação de Prof. Doutor Reis Lima e Eng. Jorge S. Coelho.
Resumo:
Dissertação de Mestrado
Resumo:
A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.
Resumo:
Extracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terms using the knowledge base of DBpedia — a community effort to extract structured information from Wikipedia. Several approaches to extract semantic relatedness from Wikipedia using bag-of-words vector models are already available in the literature. The research presented in this paper explores a novel approach using paths on an ontological graph extracted from DBpedia. It is based on an algorithm for finding and weighting a collection of paths connecting concept nodes. This algorithm was implemented on a tool called Shakti that extract relevant ontological data for a given domain from DBpedia using its SPARQL endpoint. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are reported in this paper.
Resumo:
OBJECTIVE: To evaluate the predictive value of genetic polymorphisms in the context of BCG immunotherapy outcome and create a predictive profile that may allow discriminating the risk of recurrence. MATERIAL AND METHODS: In a dataset of 204 patients treated with BCG, we evaluate 42 genetic polymorphisms in 38 genes involved in the BCG mechanism of action, using Sequenom MassARRAY technology. Stepwise multivariate Cox Regression was used for data mining. RESULTS: In agreement with previous studies we observed that gender, age, tumor multiplicity and treatment scheme were associated with BCG failure. Using stepwise multivariate Cox Regression analysis we propose the first predictive profile of BCG immunotherapy outcome and a risk score based on polymorphisms in immune system molecules (SNPs in TNFA-1031T/C (rs1799964), IL2RA rs2104286 T/C, IL17A-197G/A (rs2275913), IL17RA-809A/G (rs4819554), IL18R1 rs3771171 T/C, ICAM1 K469E (rs5498), FASL-844T/C (rs763110) and TRAILR1-397T/G (rs79037040) in association with clinicopathological variables. This risk score allows the categorization of patients into risk groups: patients within the Low Risk group have a 90% chance of successful treatment, whereas patients in the High Risk group present 75% chance of recurrence after BCG treatment. CONCLUSION: We have established the first predictive score of BCG immunotherapy outcome combining clinicopathological characteristics and a panel of genetic polymorphisms. Further studies using an independent cohort are warranted. Moreover, the inclusion of other biomarkers may help to improve the proposed model.
Resumo:
Mestrado em Engenharia Informática, Área de Especialização em Tecnologias do Conhecimento e da Decisão
Resumo:
O sector do turismo é uma área francamente em crescimento em Portugal e que tem desenvolvido a sua divulgação e estratégia de marketing. Contudo, apenas se prende com indicadores de desempenho e de oferta instalada (número de quartos, hotéis, voos, estadias), deixando os indicadores estatísticos em segundo plano. De acordo com o “ Travel & tourism Competitiveness Report 2013”, do World Economic Forum, classifica Portugal em 72º lugar no que respeita à qualidade e cobertura da informação estatística, disponível para o sector do Turismo. Refira-se que Espanha ocupa o 3º lugar. Uma estratégia de mercado, sem base analítica, que sustente um quadro de orientações específico e objetivo, com relevante conhecimento dos mercados alvo, dificilmente é compreensível ou até mesmo materializável. A implementação de uma estrutura de Business Intelligence que permita a realização de um levantamento e tratamento de dados que possibilite relacionar e sustentar os resultados obtidos no sector do turismo revela-se fundamental e crucial, para que sejam criadas estratégias de mercado. Essas estratégias são realizadas a partir da informação dos turistas que nos visitam, e dos potenciais turistas, para que possam ser cativados no futuro. A análise das características e dos padrões comportamentais dos turistas permite definir perfis distintos e assim detetar as tendências de mercado, de forma a promover a oferta dos produtos e serviços mais adequados. O conhecimento obtido permite, por um lado criar e disponibilizar os produtos mais atrativos para oferecer aos turistas e por outro informá-los, de uma forma direcionada, da existência desses produtos. Assim, a associação de uma recomendação personalizada que, com base no conhecimento de perfis do turista proceda ao aconselhamento dos melhores produtos, revela-se como uma ferramenta essencial na captação e expansão de mercado.
Resumo:
A tese desenvolvida tem como foco fornecer os meios necessários para extrair conhecimento contidos no histórico académico da instituição transformando a informação em algo simples e de fácil leitura para qualquer utilizador. Com o progresso da sociedade, as escolas recebem milhares de alunos todos os anos que terão de ser orientados e monitorizados pelos dirigentes das instituições académicas de forma a garantir programas eficientes e adequados para o progresso educacional de todos os alunos. Atribuir a um docente a responsabilidade de actuar segundo o historial académico dos seus alunos não é plausível uma vez que um aluno consegue produzir milhares de registos para análise. O paradigma de mineração de dados na educação surge com a necessidade de otimizar os recursos disponíveis expondo conclusões que não se encontram visiveis sem uma análise acentuada e cuidada. Este paradigma expõe de forma clara e sucinta os dados estatísticos analisados por computador oferecendo a possibilidade de melhorar as lacunas na qualidade de ensino das instituições. Esta dissertação detalha o desenvolvimento de uma ferramente de inteligência de negócio capaz de, através de mineração de dados, analisar e apresentar conclusões pertinentes de forma legível ao utilizador.
Resumo:
Este documento foi redigido no âmbito da dissertação do Mestrado em Engenharia Informática na área de Arquiteturas, Sistemas e Redes, do Departamento de Engenharia Informática, do ISEP, cujo tema é diagnóstico cardíaco a partir de dados acústicos e clínicos. O objetivo deste trabalho é produzir um método que permita diagnosticar automaticamente patologias cardíacas utilizando técnicas de classificação de data mining. Foram utilizados dois tipos de dados: sons cardíacos gravados em ambiente hospitalar e dados clínicos. Numa primeira fase, exploraram-se os sons cardíacos usando uma abordagem baseada em motifs. Numa segunda fase, utilizamos os dados clínicos anotados dos pacientes. Numa terceira fase, avaliamos a combinação das duas abordagens. Na avaliação experimental os modelos baseados em motifs obtiveram melhores resultados do que os construídos a partir dos dados clínicos. A combinação das abordagens mostrou poder ser vantajosa em situações pontuais.
Resumo:
A tese desenvolvida tem como foco fornecer os meios necessários para extrair conhecimento contidos no histórico académico da instituição transformando a informação em algo simples e de fácil leitura para qualquer utilizador. Com o progresso da sociedade, as escolas recebem milhares de alunos todos os anos que terão de ser orientados e monitorizados pelos dirigentes das instituições académicas de forma a garantir programas eficientes e adequados para o progresso educacional de todos os alunos. Atribuir a um docente a responsabilidade de actuar segundo o historial académico dos seus alunos não é plausível uma vez que um aluno consegue produzir milhares de registos para análise. O paradigma de mineração de dados na educação surge com a necessidade de otimizar os recursos disponíveis expondo conclusões que não se encontram visiveis sem uma análise acentuada e cuidada. Este paradigma expõe de forma clara e sucinta os dados estatísticos analisados por computador oferecendo a possibilidade de melhorar as lacunas na qualidade de ensino das instituições. Esta dissertação detalha o desenvolvimento de uma ferramente de inteligência de negócio capaz de, através de mineração de dados, analisar e apresentar conclusões pertinentes de forma legível ao utilizador.