63 resultados para Lightening schedule
Resumo:
A new algorithm is proposed for scheduling preemptible arbitrary-deadline sporadic task systems upon multiprocessor platforms, with interprocessor migration permitted. This algorithm is based on a task-splitting approach - while most tasks are entirely assigned to specific processors, a few tasks (fewer than the number of processors) may be split across two processors. This algorithm can be used for two distinct purposes: for actually scheduling specific sporadic task systems, and for feasibility analysis. Simulation- based evaluation indicates that this algorithm offers a significant improvement on the ability to schedule arbitrary- deadline sporadic task systems as compared to the contemporary state-of-art. With regard to feasibility analysis, the new algorithm is proved to offer superior performance guarantees in comparison to prior feasibility tests.
Resumo:
Mestrado em Ensino Precoce do Inglês
Resumo:
A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
This paper presents a genetic algorithm-based approach for project scheduling with multi-modes and renewable resources. In this problem activities of the project may be executed in more than one operating mode and renewable resource constraints are imposed. The objective function is the minimization of the project completion time. The idea of this approach is integrating a genetic algorithm with a schedule generation scheme. This study also proposes applying a local search procedure trying to yield a better solution when the genetic algorithm and the schedule generation scheme obtain a solution. The experimental results show that this algorithm is an effective method for solving this problem.
Resumo:
The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
- The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
In this paper, we consider a Cournot competition between a nonprofit firm and a for-profit firm in a homogeneous goods market, with uncertain demand. Given an asymmetric tax schedule, we compute explicitly the Bayesian-Nash equilibrium. Furthermore, we analyze the effects of the tax rate and the degree of altruistic preference on market equilibrium outcomes.
Resumo:
Este artigo apresenta uma nova abordagem (MM-GAV-FBI), aplicável ao problema da programação de projectos com restrições de recursos e vários modos de execução por actividade, problema conhecido na literatura anglo-saxónica por MRCPSP. Cada projecto tem um conjunto de actividades com precedências tecnológicas definidas e um conjunto de recursos limitados, sendo que cada actividade pode ter mais do que um modo de realização. A programação dos projectos é realizada com recurso a um esquema de geração de planos (do inglês Schedule Generation Scheme - SGS) integrado com uma metaheurística. A metaheurística é baseada no paradigma dos algoritmos genéticos. As prioridades das actividades são obtidas a partir de um algoritmo genético. A representação cromossómica utilizada baseia-se em chaves aleatórias. O SGS gera planos não-atrasados. Após a obtenção de uma solução é aplicada uma melhoria local. O objectivo da abordagem é encontrar o melhor plano (planning), ou seja, o plano que tenha a menor duração temporal possível, satisfazendo as precedências das actividades e as restrições de recursos. A abordagem proposta é testada num conjunto de problemas retirados da literatura da especialidade e os resultados computacionais são comparados com outras abordagens. Os resultados computacionais validam o bom desempenho da abordagem, não apenas em termos de qualidade da solução, mas também em termos de tempo útil.
Resumo:
This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
This paper presents an optimization approach for the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The proposed approach is based on a genetic algorithm technique. The scheduling rules such as SPT and MWKR are integrated into the process of genetic evolution. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities and delay times of the operations are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed approach.
Resumo:
A Satisfação no trabalho, definida como reações individuais, cognitivas, afetivas e avaliativas perante o trabalho (Locke, 1983), tem sido amplamente estudada no âmbito das organizações. A sua medição na área da saúde contribui para incrementar um bom ambiente na prática e bem-estar dos profissionais e para aumentar a qualidade dos cuidados. Em 2006 surge um novo contexto de trabalho através da criação da RNCCI, que pretende fazer face ao crescente aumento de população em situação de dependência ou incapacidade, mas também aliviar a sobrecarga e custos associados aos cuidados hospitalares. A reorganização do trabalho nas unidades de cuidados continuados acenta nos princípios da interdisciplinariedade e cooperação entre a equipa, requerendo mudança e adaptação à prática. Sendo os enfermeiros a classe profissional com maior tempo de contacto nos cuidados, importa verificar se estão satisfeitos com a mudança induzida. Assim, este estudo de natureza quantitativa pretende medir e analisar a satisfação profissional ddos enfermeiros que trabalham no serviço de longa duração e manutenção nas unidades de cuidados continuados do distrito de Braga, e verificar se esta variável é influenciada por fatores sociodemográficos e laborais. Para a recolha de dados utiliza-se a Escala de Avaliação da Satisfação no Trabalho para Enfermeiros - EASPE© (α=0,814) e um questionário sociodemográfico e profissional. A análise dos dados é efetuada com recurso à estatística descritiva e inferencial com utilização dos testes de Mann-Whitney e de Kruskal-Wallis. Os resultados obtidos evidenciam que os enfermeiros apresentam um nível de satisfação global no trabalho positivo, mas negativo nas dimensões satisfação com benefícios e recompensas e satisfação com promoção. Conclui-se, ainda, que a satisfação com promoção é influenciada pelas habilitações literárias, que a satisfação com a comunicação é influenciada pela remuneração, que a satisfação com benefícios e recompensas é influenciada pelo horário semanal e que a unidade de cuidados é determinante na satisfação global no trabalho.
Resumo:
O problema do escalonamento, por ser um dos factores fundamentais na tomada de decisão para uma boa gestão das operações, tem sido alvo de um amplo estudo, tanto na sua componente teórica como na sua componente prática. A importância de um escalonamento correto das operações é preponderante, quando as pequenas diferenças, em termos de tempos de produção, podem ter um grande impacto na competitividade da organização. Em muitas unidades produtivas, existem máquinas capazes de realizar as mesmas operações com diferentes desempenhos. Isto pode dever-se à necessidade de flexibilizar os recursos ou mesmo a uma atualização da capacidade produtiva. Embora os problemas de máquinas diferentes em paralelo tenham sido alvo de um vasto estudo, muitos deles não são passíveis de ser resolvidos através de métodos exatos. O problema de minimização do makespan (Rm||Cmax), é NP-hard, sendo habitualmente abordado através de heurísticas. Entre as heurísticas utilizadas em problemas de minimização do makespan em máquinas diferentes em paralelo, é possível identificar duas filosofias de afectação: a que utiliza os tempos de processamento para alocar as tarefas e a que utiliza as datas de conclusão. Nesta dissertação, pretende-se dar uma contribuição para a resolução do problema de afectação de recursos em sistemas de produção. Para tal, foram propostas as heurísticas OMTC 3 e Suffrage One. A contribuição consiste na proposta de versões híbridas e modificadas das heurística MCT e Suffrage, uma vez identificadas várias características que podem limitar o seu desempenho, como o facto da heurística MCT alocar as tarefas numa ordem aleatória ou a heurística Suffrage alocar mais que uma tarefa por iteração. Finalmente, procedeu-se à realização de testes computacionais, para avaliar o desempenho das heurísticas propostas. Os testes realizados permitiram concluir que a heurística OMTC 3 apresentou um melhor desempenho que a heurística MCT.
Resumo:
This paper reports on a first step towards the implementation of a framework for remote experimentation of electric machines ? the RemoteLabs platform. This project was focused on the development of two main modules: the user Web-based and the electric machines interfaces. The Web application provides the user with a front-end and interacts with the back-end ? the user and experiment persistent data. The electric machines interface is implemented as a distributed client server application where the clients, launched by the Web application, interact with the server modules located in platforms physically connected the electric machines drives. Users can register and authenticate, schedule, specify and run experiments and obtain results in the form of CSV, XML and PDF files. These functionalities were successfully tested with real data, but still without including the electric machines. This inclusion is part of another project scheduled to start soon.
Resumo:
Current Manufacturing Systems challenges due to international economic crisis, market globalization and e-business trends, incites the development of intelligent systems to support decision making, which allows managers to concentrate on high-level tasks management while improving decision response and effectiveness towards manufacturing agility. This paper presents a novel negotiation mechanism for dynamic scheduling based on social and collective intelligence. Under the proposed negotiation mechanism, agents must interact and collaborate in order to improve the global schedule. Swarm Intelligence (SI) is considered a general aggregation term for several computational techniques, which use ideas and inspiration from the social behaviors of insects and other biological systems. This work is primarily concerned with negotiation, where multiple self-interested agents can reach agreement over the exchange of operations on competitive resources. Experimental analysis was performed in order to validate the influence of negotiation mechanism in the system performance and the SI technique. Empirical results and statistical evidence illustrate that the negotiation mechanism influence significantly the overall system performance and the effectiveness of Artificial Bee Colony for makespan minimization and on the machine occupation maximization.