30 resultados para Markov Metrics

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer Disease (AD) is characterized by progressive cognitive decline and dementia. Earlier diagnosis and classification of different stages of the disease are currently the main challenges and can be assessed by neuroimaging. With this work we aim to evaluate the quality of brain regions and neuroimaging metrics as biomarkers of AD. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox functionalities were used to study AD by T1weighted, Diffusion Tensor Imaging and 18FAV45 PET, with data obtained from the AD Neuroimaging Initiative database, specifically 12 healthy controls (CTRL) and 33 patients with early mild cognitive impairment (EMCI), late MCI (LMCI) and AD (11 patients/group). The metrics evaluated were gray-matter volume (GMV), cortical thickness (CThk), mean diffusivity (MD), fractional anisotropy (FA), fiber count (FiberConn), node degree (Deg), cluster coefficient (ClusC) and relative standard-uptake-values (rSUV). Receiver Operating Characteristic (ROC) curves were used to evaluate and compare the diagnostic accuracy of the most significant metrics and brain regions and expressed as area under the curve (AUC). Comparisons were performed between groups. The RH-Accumbens/Deg demonstrated the highest AUC when differentiating between CTRLEMCI (82%), whether rSUV presented it in several brain regions when distinguishing CTRL-LMCI (99%). Regarding CTRL-AD, highest AUC were found with LH-STG/FiberConn and RH-FP/FiberConn (~100%). A larger number of neuroimaging metrics related with cortical atrophy with AUC>70% was found in CTRL-AD in both hemispheres, while in earlier stages, cortical metrics showed in more confined areas of the temporal region and mainly in LH, indicating an increasing of the spread of cortical atrophy that is characteristic of disease progression. In CTRL-EMCI several brain regions and neuroimaging metrics presented AUC>70% with a worst result in later stages suggesting these indicators as biomarkers for an earlier stage of MCI, although further research is necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

De entre todos os paradigmas de aprendizagem actualmente identificados, a Aprendizagem por Reforço revela-se de especial interesse e aplicabilidade nos inúmeros processos que nos rodeiam: desde a solitária sonda que explora o planeta mais remoto, passando pelo programa especialista que aprende a apoiar a decisão médica pela experiencia adquirida, até ao cão de brincar que faz as delícias da criança interagindo com ela e adaptando-se aos seus gostos, e todo um novo mundo que nos rodeia e apela crescentemente a que façamos mais e melhor nesta área. Desde o aparecimento do conceito de aprendizagem por reforço, diferentes métodos tem sido propostos para a sua concretização, cada um deles abordando aspectos específicos. Duas vertentes distintas, mas complementares entre si, apresentam-se como características chave do processo de aprendizagem por reforço: a obtenção de experiência através da exploração do espaço de estados e o aproveitamento do conhecimento obtido através dessa mesma experiência. Esta dissertação propõe-se seleccionar alguns dos métodos propostos mais promissores de ambas as vertentes de exploração e aproveitamento, efectuar uma implementação de cada um destes sobre uma plataforma modular que permita a simulação do uso de agentes inteligentes e, através da sua aplicação na resolução de diferentes configurações de ambientes padrão, gerar estatísticas funcionais que permitam inferir conclusões que retractem entre outros aspectos a sua eficiência e eficácia comparativas em condições específicas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the aftermath of a large-scale disaster, agents' decisions derive from self-interested (e.g. survival), common-good (e.g. victims' rescue) and teamwork (e.g. fire extinction) motivations. However, current decision-theoretic models are either purely individual or purely collective and find it difficult to deal with motivational attitudes; on the other hand, mental-state based models find it difficult to deal with uncertainty. We propose a hybrid, CvI-JI, approach that combines: i) collective 'versus' individual (CvI) decisions, founded on the Markov decision process (MDP) quantitative evaluation of joint-actions, and ii)joint-intentions (JI) formulation of teamwork, founded on the belief-desire-intention (BDI) architecture of general mental-state based reasoning. The CvI-JI evaluation explores the performance's improvement

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The portfolio generating the iTraxx EUR index is modeled by coupled Markov chains. Each of the industries of the portfolio evolves according to its own Markov transition matrix. Using a variant of the method of moments, the model parameters are estimated from a data set of Standard and Poor's. Swap spreads are evaluated by Monte-Carlo simulations. Along with an actuarially fair spread, at least squares spread is considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a Markov chain framework to characterize the behavior of the CBOE Volatility Index (VIX index). Two possible regimes are considered: high volatility and low volatility. The specification accounts for deviations from normality and the existence of persistence in the evolution of the VIX index. Since the time evolution of the VIX index seems to indicate that its conditional variance is not constant over time, I consider two different versions of the model. In the first one, the variance of the index is a function of the volatility regime, whereas the second version includes an autoregressive conditional heteroskedasticity (ARCH) specification for the conditional variance of the index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tevatron has measured a discrepancy relative to the standard model prediction in the forward-backward asymmetry in top quark pair production. This asymmetry grows with the rapidity difference of the two top quarks. It also increases with the invariant mass of the t (t) over bar pair, reaching, for high invariant masses, 3.4 standard deviations above the next-to-leading order prediction for the charge asymmetry of QCD. However, perfect agreement between experiment and the standard model was found in both total and differential cross section of top quark pair production. As this result could be a sign of new physics we have parametrized this new physics in terms of a complete set of dimension six operators involving the top quark. We have then used a Markov chain Monte Carlo approach in order to find the best set of parameters that fits the data, using all available data regarding top quark pair production at the Tevatron. We have found that just a very small number of operators are able to fit the data better than the standard model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Controlo e Gestão dos Negócios

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de natureza científica realizada para obtenção do grau de Mestre em Engenharia de Redes de Computadores e Multimédia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Contabilidade e Gestão das Instituições Financeiras

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perante os contínuos desafios com que se defrontam as organizações, consequência dos elevados níveis de competitividade, é-lhes exigido uma nova dinâmica de gestão, onde os recursos humanos se assumem como o seu principal elemento diferenciador. Neste contexto, é fundamental a existência de uma gestão estratégica dos recursos humanos, a institucionalização de um conjunto de práticas que permitam transformar os recursos humanos num activo estratégico, que conduza à execução da estratégia organizacional. Essas práticas passam pela atracção e retenção de talentos, oportunidades de desenvolvimento, propiciar boas condições de trabalho quer a nível quantitativo quer a nível qualitativo. E como cada pessoa é um ser único, dotado de características próprias, impossíveis de imitar, deve ser reconhecida a capacidade de serem uma fonte de vantagem competitiva. Não é suficiente o estabelecimento de um conjunto de boas práticas para que se possuam recursos humanos estratégicos. É fundamental fazer o acompanhamento dessas práticas através da monitorização. Na gestão o que não pode ser medido não pode ser gerido. É fundamental sensibilizar os gestores, profissionais de recursos humanos, para a criação de sistemas de medida e métricas que possam aferir a contribuição do Capital Humano para a missão e estratégia das organizações. O Balanced Scorecard é uma ferramenta de gestão que possibilita, através da informação dos seus indicadores, a implementação das estratégias nas organizações. A finalidade é garantir que os indicadores definidos estejam coerentes com a estratégia global. Essa metodologia tem assim o mérito de compatibilizar (através de indicadores quantitativos) a gestão de recursos humanos com os objectivos a longo prazo da organização. A existência de indicadores qualitativos permite ainda às organizações mensurar o nível de desempenho e motivação, factores influentes no clima organizacional