134 resultados para Semi-Supervised Learning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

I (Prática pedagógica)- Esta secção do Relatório de Estágio pretende apresentar elementos referentes ao Estágio do Ensino Especializado da Música no ensino do saxofone, efectuado na Escola de Música Luís António Maldonado Rodrigues, no ano lectivo 2012/2013. Neste estágio foram envolvidos e analisados três alunos, em níveis distintos de desenvolvimento, mas com orientações semelhantes no que respeita à organização do trabalho. Para cada aluno foram realizados trinta planos de aula, uma planificação anual e três gravações vídeo/áudio em contexto de sala de aula, permitindo uma análise e reflexão mais profunda do trabalho docente. A secção é composta pela caracterização da escola onde se realizou o estágio, através da sua contextualização/funcionamento, dos seus espaços e equipamentos, recursos humanos existentes e organização pedagógica. Posteriormente é efectuada a caracterização dos três alunos envolvidos no estágio, baseada na experiência docente e nos conhecimentos fornecidos pelas Unidades Curriculares do Mestrado em Ensino da Música. Seguidamente descrevem-se as práticas lectivas desenvolvidas ao longo do ano lectivo por parte do docente, incorporando linhas orientadoras da docência aplicadas na prática pedagógica. É feita uma análise crítica da actividade docente no âmbito do estágio do Ensino Especializado da Música, e, por último, uma conclusão desta primeira secção. .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Especial, domínio Cognição e Multideficiência

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino de Dança.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In research on Silent Speech Interfaces (SSI), different sources of information (modalities) have been combined, aiming at obtaining better performance than the individual modalities. However, when combining these modalities, the dimensionality of the feature space rapidly increases, yielding the well-known "curse of dimensionality". As a consequence, in order to extract useful information from this data, one has to resort to feature selection (FS) techniques to lower the dimensionality of the learning space. In this paper, we assess the impact of FS techniques for silent speech data, in a dataset with 4 non-invasive and promising modalities, namely: video, depth, ultrasonic Doppler sensing, and surface electromyography. We consider two supervised (mutual information and Fisher's ratio) and two unsupervised (meanmedian and arithmetic mean geometric mean) FS filters. The evaluation was made by assessing the classification accuracy (word recognition error) of three well-known classifiers (knearest neighbors, support vector machines, and dynamic time warping). The key results of this study show that both unsupervised and supervised FS techniques improve on the classification accuracy on both individual and combined modalities. For instance, on the video component, we attain relative performance gains of 36.2% in error rates. FS is also useful as pre-processing for feature fusion. Copyright © 2014 ISCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar