27 resultados para units-invariant benchmarking
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Aims: The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were XL 3000 (480 mW/cm(2)), Jet Lite 4000 Plus (1230mW/cm(2)), and Ultralume Led 5 (790 mW/cm(2)) and immersion media were artificial saliva, Coke(R), tea and coffee, totaling 12 experimental groups. Specimens (10 mm X 2 mm) were immersed in each respective Solution for 5 min, three times a day, during 60 days and stored in artificial saliva at 37 degrees C +/- 1 degrees C between immersion periods. Topography and chemical analysis was qualitative. Findings: Groups immersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calcium at the material surface. Regarding coffee, there was a reasonable chemical degradation with loss of load particles and deposition of ions. For tea, superficial degradation occurred in specific areas with deposition of calcium, carbon. potassium and phosphorus. For Coke(R), excessive matrix degradation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion: Light curing units did not influence the superficial morphology of composite resin tested, but the immersion beverages did. Coke(R) affected material`s surface more than did the other tested drinks. Microsc. Res. Tech. 73:176-181, 2010. (c) 2009 Wiley-Liss Inc.
Resumo:
Objective: To evaluate the incidence of life support limitation and medical practices in the last 48 hrs of life of children in seven Brazilian pediatric intensive care units (PICUs). Design. Cross-sectional multicenter retrospective study based on medical chart review. Setting: Seven PICUs belonging to university and tertiary hospitals located in three Brazilian regions: two in Porto Alegre (southern region), two in Sao Paulo (southeastern region), and three in Salvador (northeastern region). Patients. Medical records of all children who died in seven PICUs from January 2003 to December 2004. Deaths in the first 24 hrs of admission to the PICU and brain death were excluded. Interventions: Two pediatric intensive care residents from each PICU were trained to fill out a standard protocol (K = 0.9) to record demographic data and all medical management provided in the last 48 hrs of life (inotropes, sedatives, mechanical ventilation, full resuscitation maneuvers or not). Student`s t-test, analysis of variance, chi-square test, and relative risk were used for comparison of data. Measurements and Main Results. Five hundred and sixty-one deaths were identified; 97 records were excluded (61 because of brain death and 36 due to <24 hrs in the PICU). Thirty-six medical charts could not be found. Cardiopulmonary resuscitation was performed in 242 children (57%) with a significant difference between the southeastern and northeastern regions (p =.0003). Older age (p = .025) and longer PICU stay (p = .001) were associated with do-not-resuscitate orders. In just 52.5% of the patients with life support limitation, the decision was clearly recorded in the medical chart. No ventilatory support was provided in 14 cases. Inotropic drug infusions were maintained or increased in 66% of patients with do-not-resuscitate orders. Conclusions. The incidence of life support limitation has increased among Brazilian PICUs but with significant regional differences. Do-not-resuscitate orders are still the most common practice, with scarce initiatives for withdrawing or withholding life support measures.
Resumo:
Mesenchymal stem cells (MSC) are multipotent cells which can be obtained from several adult and fetal tissues including human umbilical cord units. We have recently shown that umbilical cord tissue (UC) is richer in MSC than umbilical cord blood (UCB) but their origin and characteristics in blood as compared to the cord remains unknown. Here we compared, for the first time, the exonic protein-coding and intronic noncoding RNA (ncRNA) expression profiles of MSC from match-paired UC and UCB samples, harvested from the same donors, processed simultaneously and under the same culture conditions. The patterns of intronic ncRNA expression in MSC from UC and UCB paired units were highly similar, indicative of their common donor origin. The respective exonic protein-coding transcript expression profiles, however, were significantly different. Hierarchical clustering based on protein-coding expression similarities grouped MSC according to their tissue location rather than original donor. Genes related to systems development, osteogenesis and immune system were expressed at higher levels in UCB, whereas genes related to cell adhesion, morphogenesis, secretion, angiogenesis and neurogenesis were more expressed in UC cells. These molecular differences verified in tissue-specific MSC gene expression may reflect functional activities influenced by distinct niches and should be considered when developing clinical protocols involving MSC from different sources. In addition, these findings reinforce our previous suggestion on the importance of banking the whole umbilical cord unit for research or future therapeutic use.
Resumo:
Snake venom metalloproteinases (SVMPs) have been extensively studied and their effects associated with the local bleeding observed in human accidents by viper snakes. Representatives of P-I and P-III classes of SVMPs similarly hydrolyze extracellular matrix proteins or coagulation factors while only P-III SVMPs induce significant hemorrhage in experimental models. In this work, the effects of P-I and P-III SVMPs on plasma proteins and cultures of muscle and endothelial cells were compared in order to enlighten the mechanisms involved in venom-induced hemorrhage. To reach this comparison, BnP1 was isolated from B. neuwiedi venom and used as a weakly hemorrhagic P-I SVMPs and jararhagin was used as a model of potently hemorrhagic P-III SVMP. BnP1 was isolated by size exclusion and anion-exchange chromatographies, showing apparent molecular mass of approximately 24kDa and sequence similarity with other members of SVMPs, which allowed its classification as a group P-I SVMP. The comparison of local effects induced by SVMPs showed that BnP1 was devoid of significant myotoxic and hemorrhagic activities and jararhagin presented only hemorrhagic activity. BnP1 and jararhagin were able to hydrolyze fibrinogen and fibrin, although the latter displayed higher activity in both systems. Using HUVEC primary cultures, we observed that BnP1 induced cell detachment and a decrease in the number of viable endothelial cells in levels comparable to those observed by treatment with jararhagin. Moreover, both BnP1 and jararhagin induced apoptosis in HUVECs while only a small increase in LDH supernatant levels was observed after treatment with jararhagin, suggesting that the major mechanism involved in endothelial cell death is apoptosis. Jararhagin and BnP1 induced little effects on C2C12 muscle cell cultures, characterized by a partial detachment 24h after treatment and a mild necrotic effect as evidenced by a small increase in the supernatants LDH levels. Taken together, our data show that P-I and P-III SVMPs presented comparable effects except for the hemorrhagic activity, suggesting that hydrolysis of coagulation factors or damage to endothelial cells are not sufficient for induction of local bleeding. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The isoprenoid metabolic pathway in protozoa of the Leishmania genus exhibits distinctive characteristics. These parasites, as well as other members of the Trypanosomatidae family, synthesize ergosterol, instead of cholesterol, as the main membrane sterol lipid. Leishmania has been shown to utilize leucine, instead of acetate as the main precursor for sterol biosynthesis. While mammalian dolichols are molecules containing 15-23 isoprene units, Leishmania amazonensis promastigotes synthesize dolichol of 11 and 12 units. In this paper, we show that the intracellular stages of L. amazonensis, amastigotes, synthesize mainly polyprenols of 9 isoprene units, instead of dolichol. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.
Resumo:
In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
This paper proposes a parallel hardware architecture for image feature detection based on the Scale Invariant Feature Transform algorithm and applied to the Simultaneous Localization And Mapping problem. The work also proposes specific hardware optimizations considered fundamental to embed such a robotic control system on-a-chip. The proposed architecture is completely stand-alone; it reads the input data directly from a CMOS image sensor and provides the results via a field-programmable gate array coupled to an embedded processor. The results may either be used directly in an on-chip application or accessed through an Ethernet connection. The system is able to detect features up to 30 frames per second (320 x 240 pixels) and has accuracy similar to a PC-based implementation. The achieved system performance is at least one order of magnitude better than a PC-based solution, a result achieved by investigating the impact of several hardware-orientated optimizations oil performance, area and accuracy.
Resumo:
Using the QCD sum rules we test if the charmonium-like structure Y(4274), observed in the J/psi phi invariant mass spectrum, can be described with a D(s)(D) over bar (s0)(2317)+ h.c. molecular current with J(PC) = 0(-+). We consider the contributions of condensates up to dimension ten and we work at leading order in alpha(s). We keep terms which are linear in the strange quark mass m(s). The mass obtained for such state is mD(s)D(s0) = (4.78 +/- 0.54) GeV. We also consider a molecular 0(-+) D (D) over bar (0)(2400)+ h.c. current and we obtain m(DD0) = (4.55 +/- 0.49) GeV. Our study shows that the newly observed Y(4274) in the J/psi phi invariant mass spectrum can be, considering the uncertainties, described using a molecular charmonium current. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.
Resumo:
The purpose of this study was to evaluate the effect of pre-heating resin composite photo-cured with light-curing units (LCU) by FT-IR. Twenty specimens were made in a metallic mold (4 mm diameter x 2 mm thick) from composite resin-Tetric Ceram (R) (Ivoclar/Vivadent) at room temperature (25 degrees C) and pre heated to 37, 54, and 60 degrees C. The specimens were cured with halogen curing light (QTH) and light emitted by diodes (LED) during 40 s. Then, the specimens were pulverized, pressed with KBr and analyzed with FT-IR. The data were submitted to statistical analysis of variance and Kruskal-Wallis test. Study data showed no statistically significant difference to the degree of conversion for the different light curing units (QTH and LED) (p > 0.05). With the increase of temperature there was significant increase in the degree of conversion (p < 0.05). In this study were not found evidence that the light curing unit and temperature influenced the degree of conversion.
Resumo:
The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60A degrees C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU.
Resumo:
The purpose of this study was to evaluate the temperature increase during the polymerization process through the use of three different light-curing units with different irradiation times. One argon laser (Innova, Coherent), one halogen (Optilight 501, Demetron), and one blue LED (LEC 1000, MM Optics) LCU with 500 mW/cm(2) during 5, 10, 20, 30, 40, 50, and 60 s of irradiation times were used in this study. The composite resin used was a microhybrid Filtek Z-250 (3M/ESPE) at color A(2). The samples were made in a metallic mold 2 mm in thickness and 4 mm in diameter and previously light-cured during 40 s. A thermocouple (Model 120-202 EAJ, Fenwal Electronic, Milford, MA, USA) was introduced in the composite resin to measure the temperature increase during the curing process. The highest temperature increase was recorded with a Curing Light 2500 halogen LCU (5 and 31 degrees C after 5 and 60 s, respectively), while the lowest temperature increase was recorded for the Innova LCU based on an argon laser (2 and 11 degrees C after 5 and 60 s, respectively). The temperature recorded for LCU based on a blue LED was 3 and 22 degrees C after 5 and 60 s, respectively. There was a quantifiable amount of heat generated during the visible light curing of a composite resin. The amount of heat generated was influenced by the characteristics of the light-curing units used and the irradiation times.
Resumo:
We present a one-parameter extension of the raise and peel one-dimensional growth model. The model is defined in the configuration space of Dyck (RSOS) paths. Tiles from a rarefied gas hit the interface and change its shape. The adsorption rates are local but the desorption rates are non-local; they depend not only on the cluster hit by the tile but also on the total number of peaks (local maxima) belonging to all the clusters of the configuration. The domain of the parameter is determined by the condition that the rates are non-negative. In the finite-size scaling limit, the model is conformal invariant in the whole open domain. The parameter appears in the sound velocity only. At the boundary of the domain, the stationary state is an adsorbing state and conformal invariance is lost. The model allows us to check the universality of non-local observables in the raise and peel model. An example is given.
Resumo:
Fluorene and thiophene units are commonly used in polymeric materials for electro-optical applications. Due to differences in reactivity, the final composition of polymers containing these components often differs from that used in their preparation. This contribution describes the synthesis of PPV type terpolymers built by fluorene, phenylene and thiophene units and their quantification by CPMAS NMR. The similarity of the three aromatic co-monomers makes it difficult to separate the analytical responses that would allow quantification of each copolymer unit in the chain. In this sense, we show that the combination of dipolar dephased CPMAS with radiofrequency ramp and proper spectral treatment allows a good estimation and quantification of the copolymer constitution. (C) 2011 Elsevier Ltd. All rights reserved.