10 resultados para isomorphism

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces 2(m) circle plus [0, alpha], the topological sums of Cantor cubes 2(m), with m smaller than the first sequential cardinal, and intervals of ordinal numbers [0, alpha]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of C(2(m) circle plus [0, alpha]) spaces with m >= N(0) and alpha >= omega(1) are the trivial ones. This result leads to some elementary questions on large cardinals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

5-(4-(N-tert-Butyl-N-aminoxylphenyl)) pyrimidine (RL, 4PPN) forms crystallographically isostructural and isomorphic pseudo-octahedral M(RL)(2)(hfac)(2) complexes with M(hfac)(2), M = Zn, Cu, Ni, Co, and Mn. Multiple close contacts occur between sites of significant spin density of the organic radical units. Magnetic behavior of the Zn, Cu, Ni, Co complexes appears to involve multiple exchange pathways, with multiple close crystallographic contacts between sites that EPR (of 4PPN) indicates to have observable spin density. Powder EPR spectra at room temperature and low temperature are reported for each complex. Near room temperature, the magnetic moments of the complexes are roughly equal to those expected by a sum of non-interacting moments (two radicals plus ion). As temperature decreases, AFM exchange interactions become evident in all of the complexes. The closest fits to the magnetic data were found for a 1-D Heisenberg AFM chain model in the Zn(II) complex (J/k = (-)7 K), and for three-spin RL-M-RL exchange in the other complexes (J/k = (-)26 K, (-)3 K, (-) 6 K, for Cu(II), Ni(II), and Co(II) complexes, respectively). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a new proposal for the ""picture lowering"" operators, we compute the tree level scattering amplitude in the minimal pure spinor formalism by performing the integration over the pure spinor space as a multidimensional Cauchy-type integral. The amplitude will be written in terms of the projective pure spinor variables, which turns out to be useful to relate rigorously the minimal and non-minimal versions of the pure spinor formalism. The natural language for relating these formalisms is the. Cech-Dolbeault isomorphism. Moreover, the Dolbeault cocycle corresponding to the tree-level scattering amplitude must be evaluated in SO(10)/SU(5) instead of the whole pure spinor space, which means that the origin is removed from this space. Also, the. Cech-Dolbeault language plays a key role for proving the invariance of the scattering amplitude under BRST, Lorentz and supersymmetry transformations, as well as the decoupling of unphysical states. We also relate the Green`s function for the massless scalar field in ten dimensions to the tree-level scattering amplitude and comment about the scattering amplitude at higher orders. In contrast with the traditional picture lowering operators, with our new proposal the tree level scattering amplitude is independent of the constant spinors introduced to define them and the BRST exact terms decouple without integrating over these constant spinors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cohomology groups H(s)(Z(n), Z(m)) are studied to describe all groups up to isomorphism which are (central) extensions of the cyclic group Z(n) by the Z(n)-module Z(m). Further, for each such a group the number of non-equivalent extensions is determined. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suppose that X and Y are Banach spaces isomorphic to complemented subspaces of each other. In 1996, W. T. Gowers solved the Schroeder- Bernstein Problem for Banach spaces by showing that X is not necessarily isomorphic to Y. However, if X-2 is complemented in X with supplement A and Y-2 is complemented in Y with supplement B, that is, { X similar to X-2 circle plus A Y similar to Y-2 circle plus B, then the classical Pelczynski`s decomposition method for Banach spaces shows that X is isomorphic to Y whenever we can assume that A = B = {0}. But unfortunately, this is not always possible. In this paper, we show that it is possible to find all finite relations of isomorphism between A and B which guarantee that X is isomorphic to Y. In order to do this, we say that a quadruple (p, q, r, s) in N is a P-Quadruple for Banach spaces if X is isomorphic to Y whenever the supplements A and B satisfy A(p) circle plus B-q similar to A(r) circle plus B-s . Then we prove that (p, q, r, s) is a P-Quadruple for Banach spaces if and only if p - r = s - q = +/- 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components We apply our work to obtain similar information about the loop algebras of mdecomposable RA loops and to produce negative answers to the isomorphism problem over various fields (C) 2010 Elsevier Inc All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We classify the ( finite and infinite) virtually cyclic subgroups of the pure braid groups P(n)(RP(2)) of the projective plane. The maximal finite subgroups of P(n)(RP(2)) are isomorphic to the quaternion group of order 8 if n = 3, and to Z(4) if n >= 4. Further, for all n >= 3, the following groups are, up to isomorphism, the infinite virtually cyclic subgroups of P(n)(RP(2)): Z, Z(2) x Z and the amalgamated product Z(4)*(Z2)Z(4).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Can Boutet de Monvel`s algebra on a compact manifold with boundary be obtained as the algebra Psi(0)(G) of pseudodifferential operators on some Lie groupoid G? If it could, the kernel G of the principal symbol homomorphism would be isomorphic to the groupoid C*-algebra C*(G). While the answer to the above question remains open, we exhibit in this paper a groupoid G such that C*(G) possesses an ideal I isomorphic to G. In fact, we prove first that G similar or equal to Psi circle times K with the C*-algebra Psi generated by the zero order pseudodifferential operators on the boundary and the algebra K of compact operators. As both Psi circle times K and I are extensions of C(S*Y) circle times K by K (S*Y is the co-sphere bundle over the boundary) we infer from a theorem by Voiculescu that both are isomorphic.