331 resultados para half-frequency bunching method

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotationally-split modes can provide valuable information about the internal rotation profile of stars. This has been used for years to infer the internal rotation behavior of the Sun. The present work discusses the potential additional information that rotationally splitting asymmetries may provide when studying the internal rotation profile of stars. We present here some preliminary results of a method, currently under development, which intends: 1) to understand the variation of the rotational splitting asymmetries in terms of physical processes acting on the angular momentum distribution in the stellar interior, and 2) how this information can be used to better constrain the internal rotation profile of the stars. The accomplishment of these two objectives should allow us to better use asteroseismology as a test-bench of the different theories describing the angular momentum distribution and evolution in the stellar interiors. (C) 2010 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to validate the intake of carotenoids, fruits and vegetables estimated by the Food Frequency Questionnaire for Adolescents (FFQA) using the method of triads. Blood samples were collected from 80 elementary school adolescents to assess serum levels of β-carotene. Partial correlation coefficients (r) were calculated between an estimated intake of carotenoids, fruits and vegetables and the serum levels of β-carotene. Validity coefficients were calculated using the method of triads. With the exception of carotenoids, partial r from the food frequency questionnaire (FFQ) were greater than those of the 24-hour recall (24hR). The fruit/vegetable group showed the highest partial r for the FFQ (r = 0.235) and the 24hR (r = 0.137). The highest validity coefficient was obtained for the vegetable group, as assessed by the FFQ (r = 0.873). On average, the validity coefficient values for the FFQ were greater than those obtained for the 24hR or the β-carotene serum levels. The FFQA is an accurate tool for estimating the intake of carotenoids, fruits and vegetables in this population group.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work deals with an improved plane frame formulation whose exact dynamic stiffness matrix (DSM) presents, uniquely, null determinant for the natural frequencies. In comparison with the classical DSM, the formulation herein presented has some major advantages: local mode shapes are preserved in the formulation so that, for any positive frequency, the DSM will never be ill-conditioned; in the absence of poles, it is possible to employ the secant method in order to have a more computationally efficient eigenvalue extraction procedure. Applying the procedure to the more general case of Timoshenko beams, we introduce a new technique, named ""power deflation"", that makes the secant method suitable for the transcendental nonlinear eigenvalue problems based on the improved DSM. In order to avoid overflow occurrences that can hinder the secant method iterations, limiting frequencies are formulated, with scaling also applied to the eigenvalue problem. Comparisons with results available in the literature demonstrate the strength of the proposed method. Computational efficiency is compared with solutions obtained both by FEM and by the Wittrick-Williams algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research presents a method for frequency estimation in power systems using an adaptive filter based on the Least Mean Square Algorithm (LMS). In order to analyze a power system, three-phase voltages were converted into a complex signal applying the alpha beta-transform and the results were used in an adaptive filtering algorithm. Although the use of the complex LMS algorithm is described in the literature, this paper deals with some practical aspects of the algorithm implementation. In order to reduce computing time, a coefficient generator was implemented. For the algorithm validation, a computing simulation of a power system was carried Out using the ATP software. Many different situations were Simulated for the performance analysis of the proposed methodology. The results were compared to a commercial relay for validation, showing the advantages of the new method. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carrying out information about the microstructure and stress behaviour of ferromagnetic steels, magnetic Barkhausen noise (MBN) has been used as a basis for effective non-destructive testing methods, opening new areas in industrial applications. One of the factors that determines the quality and reliability of the MBN analysis is the way information is extracted from the signal. Commonly, simple scalar parameters are used to characterize the information content, such as amplitude maxima and signal root mean square. This paper presents a new approach based on the time-frequency analysis. The experimental test case relates the use of MBN signals to characterize hardness gradients in a AISI4140 steel. To that purpose different time-frequency (TFR) and time-scale (TSR) representations such as the spectrogram, the Wigner-Ville distribution, the Capongram, the ARgram obtained from an AutoRegressive model, the scalogram, and the Mellingram obtained from a Mellin transform are assessed. It is shown that, due to nonstationary characteristics of the MBN, TFRs can provide a rich and new panorama of these signals. Extraction techniques of some time-frequency parameters are used to allow a diagnostic process. Comparison with results obtained by the classical method highlights the improvement on the diagnosis provided by the method proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. In an earlier paper we introduced a new method for determining asteroid families where families were identified in the proper frequency domain (n, g, g + s) ( where n is the mean-motion, and g and s are the secular frequencies of the longitude of pericenter and nodes, respectively), rather than in the proper element domain (a, e, sin(i)) (semi-major axis, eccentricity, and inclination). Here we improve our techniques for reliably identifying members of families that interact with nonlinear secular resonances of argument other than g or g + s and for asteroids near or in mean-motion resonant configurations. Methods. We introduce several new distance metrics in the frequency space optimal for determining the diffusion in secular resonances of argument 2g - s, 3g - s, g - s, s, and 2s. We also regularize the dependence of the g frequency as a function of the n frequency (Vesta family) or of the eccentricity e (Hansa family). Results. Our new approaches allow us to recognize as family members objects that were lost with previous methods, while keeping the advantages of the Carruba & Michtchenko (2007, A& A, 475, 1145) approach. More important, an analysis in the frequency domain permits a deeper understanding of the dynamical evolution of asteroid families not always obtainable with an analysis in the proper element domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use the density functional theory/local-density approximation (DFT/LDA)-1/2 method [L. G. Ferreira , Phys. Rev. B 78, 125116 (2008)], which attempts to fix the electron self-energy deficiency of DFT/LDA by half-ionizing the whole Bloch band of the crystal, to calculate the band offsets of two Si/SiO(2) interface models. Our results are similar to those obtained with a ""state-of-the-art"" GW approach [R. Shaltaf , Phys. Rev. Lett. 100, 186401 (2008)], with the advantage of being as computationally inexpensive as the usual DFT/LDA. Our band gap and band offset predictions are in excellent agreement with experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel graphical approach to adjust and evaluate frequency-based relays employed in anti-islanding protection schemes of distributed synchronous generators, in order to meet the anti-islanding and abnormal frequency variation requirements, simultaneously. The proposed method defines a region in the power mismatch space, inside which the relay non-detection zone should be located, if the above-mentioned requirements must be met. Such region is called power imbalance application region. Results show that this method can help protection engineers to adjust frequency-based relays to improve the anti-islanding capability and to minimize false operation occurrences, keeping the abnormal frequency variation utility requirements satisfied. Moreover, the proposed method can be employed to coordinate different types of frequency-based relays, aiming at improving overall performance of the distributed generator frequency protection scheme. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows a new hybrid method for risk assessment regarding interruptions in sensitive processes due to faults in electric power distribution systems. This method determines indices related to long duration interruptions and short duration voltage variations (SDVV), such as voltage sags and swells in each customer supplied by the distribution network. Frequency of such occurrences and their impact on customer processes are determined for each bus and classified according to their corresponding magnitude and duration. The method is based on information regarding network configuration, system parameters and protective devices. It randomly generates a number of fault scenarios in order to assess risk areas regarding long duration interruptions and voltage sags and swells in an especially inventive way, including frequency of events according to their magnitude and duration. Based on sensitivity curves, the method determines frequency indices regarding disruption in customer processes that represent equipment malfunction and possible process interruptions due to voltage sags and swells. Such approach allows for the assessment of the annual costs associated with each one of the evaluated power quality indices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computational method based on the impulse response and on the discrete representation computational concept is proposed for the determination of the echo responses from arbitrary-geometry targets. It is supposed that each point of the transducer aperture can be considered as a source radiating hemispherical waves to the reflector. The local interaction with each of the hemispherical waves at the reflector surface can be modeled as a plane wave impinging on a planar surface, using the respective reflection coefficient. The method is valid for all field regions and can be performed for any excitation waveform radiated from an arbitrary acoustic aperture. The effects of target geometry, position, and material on both the amplitude and the shape of the echo response are studied. The model is compared with experimental results obtained using broadband transducers together with plane and cylindrical concave rectangular reflectors (aluminum, brass, and acrylic), as well as a circular cavity placed on a plane surface, in a water medium. The method can predict the measured echoes accurately. This paper shows an improved approach of the method, considering the reflection coefficient for all incident hemispherical waves arriving at each point of the target surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atomic force microscope (AFM) introduced the surface investigation with true atomic resolution. In the frequency modulation technique (FM-AFM) both the amplitude and the frequency of oscillation of the micro-cantilever must be kept constant even in the presence of tip-surface interaction forces. For that reason, the proper design of the Phase-Locked Loop (PLL) used in FM-AFM is vital to system performance. Here, the mathematical model of the FM-AFM control system is derived considering high order PLL In addition a method to design stable third-order Phase-Locked Loops is presented. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have designed, built, and tested an early prototype of a novel subxiphoid access system intended to facilitate epicardial electrophysiology, but with possible applications elsewhere in the body. The present version of the system consists of a commercially available insertion needle, a miniature pressure sensor and interconnect tubing, read-out electronics to monitor the pressures measured during the access procedure, and a host computer with user-interface software. The nominal resolution of the system is <0.1 mmHg, and it has deviations from linearity of <1%. During a pilot series of human clinical studies with this system, as well as in an auxiliary study done with an independent method, we observed that the pericardial space contained pressure-frequency components related to both the heart rate and respiratory rate, while the thorax contained components related only to the respiratory rate, a previously unobserved finding that could facilitate access to the pericardial space. We present and discuss the design principles, details of construction, and performance characteristics of this system.