21 resultados para generalized additive model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In many data sets from clinical studies there are patients insusceptible to the occurrence of the event of interest. Survival models which ignore this fact are generally inadequate. The main goal of this paper is to describe an application of the generalized additive models for location, scale, and shape (GAMLSS) framework to the fitting of long-term survival models. in this work the number of competing causes of the event of interest follows the negative binomial distribution. In this way, some well known models found in the literature are characterized as particular cases of our proposal. The model is conveniently parameterized in terms of the cured fraction, which is then linked to covariates. We explore the use of the gamlss package in R as a powerful tool for inference in long-term survival models. The procedure is illustrated with a numerical example. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective. To investigate the short-term effects of exposure to particulate matter from biomass burning in the Amazon on the daily demand for outpatient care due to respiratory diseases in children and the elderly. Methods. Epidemiologic study with ecologic time series design. Daily consultation records were obtained from the 14 primary health care clinics in the municipality of Alta Floresta, state of Mato Grosso, in the southern region of the Brazilian Amazon, between January 2004 and December 2005. Information on the daily levels of fine particulate matter was made available by the Brazilian National Institute for Spatial Research. To control for confounding factors ( situations in which a non-causal association between exposure and disease is observed due to a third variable), variables related to time trends, seasonality, temperature, relative humidity, rainfall, and calendar effects ( such as occurrence of holidays and weekends) were included in the model. Poisson regression with generalized additive models was used. Results. A 10 mu g/m(3) increase in the level of exposure to particulate matter was associated with increases of 2.9% and 2.6% in outpatient consultations due to respiratory diseases in children on the 6th and 7th days following exposure. Significant associations were not observed for elderly individuals. Conclusions. The results suggest that the levels of particulate matter from biomass burning in the Amazon are associated with adverse effects on the respiratory health of children.
Resumo:
We consider consider the problem of dichotomizing a continuous covariate when performing a regression analysis based on a generalized estimation approach. The problem involves estimation of the cutpoint for the covariate and testing the hypothesis that the binary covariate constructed from the continuous covariate has a significant impact on the outcome. Due to the multiple testing used to find the optimal cutpoint, we need to make an adjustment to the usual significance test to preserve the type-I error rates. We illustrate the techniques on one data set of patients given unrelated hematopoietic stem cell transplantation. Here the question is whether the CD34 cell dose given to patient affects the outcome of the transplant and what is the smallest cell dose which is needed for good outcomes. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
BACKGROUND: Previous pooled analyses have reported an association between magnetic fields and childhood leukaemia. We present a pooled analysis based on primary data from studies on residential magnetic fields and childhood leukaemia published after 2000. METHODS: Seven studies with a total of 10 865 cases and 12 853 controls were included. The main analysis focused on 24-h magnetic field measurements or calculated fields in residences. RESULTS: In the combined results, risk increased with increase in exposure, but the estimates were imprecise. The odds ratios for exposure categories of 0.1-0.2 mu T, 0.2-0.3 mu T and >= 0.3 mu T, compared with <0.1 mu T, were 1.07 (95% Cl 0.81-1.41), 1.16 (0.69-1.93) and 1.44 (0.88-2.36), respectively. Without the most influential study from Brazil, the odds ratios increased somewhat. An increasing trend was also suggested by a nonparametric analysis conducted using a generalised additive model. CONCLUSIONS: Our results are in line with previous pooled analyses showing an association between magnetic fields and childhood leukaemia. Overall, the association is weaker in the most recently conducted studies, but these studies are small and lack methodological improvements needed to resolve the apparent association. We conclude that recent studies on magnetic fields and childhood leukaemia do not alter the previous assessment that magnetic fields are possibly carcinogenic. British Journal of Cancer (2010) 103, 1128-1135. doi: 10.1038/sj.bjc.6605838 www.bjcancer.com (c) 2010 Cancer Research UK
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady-shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5-35 degrees C. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G` and G `` moduli than the variation in temperature.
Resumo:
The humpback whale (Megaptera novaeangliae) population that uses Abrolhos Bank, off the east coast of Brazil as a breeding ground is increasing. To describe temporal changes in the relative abundance of humpback whales around Abrolhos, seven years (1998-2004) of whale count data were collected during July through to November. During one-hour-scans, observers determined group size within 9.3 km (5 n.m.) of a land-based observing station. A total Of 930 scans, comprising 7996 sightings of adults and 2044 calves were analysed using generalized linear models that included variables for time of day, day of the season, years and two-way interactions as possible predictors. The pattern observed was the gradual build-up and decline in whale counts within seasons. Patterns and peaks of adult and calf counts varied among years. Although fluctuation was observed, there was generally an increasing trend in adult counts among years. Calf counts increased only in 2004. These fluctuations may have been caused by some environmental conditions in humpback whales` summering grounds and also by changes in spatial-temporal concentrations in Abrolhos Bank. The general pattern observed within the study area mirrored what was observed in the whole Abrolhos Bank. Knowledge of the consistency with which humpback whales use this important nursing area should prove beneficial for designing future monitoring programmes especially related to whale watching activities around Abrolhos Archipelago.
Resumo:
For the first time, we introduce a class of transformed symmetric models to extend the Box and Cox models to more general symmetric models. The new class of models includes all symmetric continuous distributions with a possible non-linear structure for the mean and enables the fitting of a wide range of models to several data types. The proposed methods offer more flexible alternatives to Box-Cox or other existing procedures. We derive a very simple iterative process for fitting these models by maximum likelihood, whereas a direct unconditional maximization would be more difficult. We give simple formulae to estimate the parameter that indexes the transformation of the response variable and the moments of the original dependent variable which generalize previous published results. We discuss inference on the model parameters. The usefulness of the new class of models is illustrated in one application to a real dataset.
Resumo:
We present a large-scale systematics of charge densities, excitation energies and deformation parameters For hundreds of heavy nuclei The systematics is based on a generalized rotation vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation. (C) 2010 Elsevier B V All rights reserved.
Resumo:
Scrotal circumference data from 47,605 Nellore young bulls, measured at around 18 mo of age (SC18), were analyzed simultaneously with 27,924 heifer pregnancy (HP) and 80,831 stayability (STAY) records to estimate their additive genetic relationships. Additionally, the possibility that economically relevant traits measured directly in females could replace SC18 as a selection criterion was verified. Heifer pregnancy was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 d. Females were exposed to sires for the first time at about 14 mo of age (between 11 and 16 mo). Stayability was defined as whether or not a cow calved every year up to 5 yr of age, when the opportunity to breed was provided. A Bayesian linear-threshold-threshold analysis via Gibbs sampler was used to estimate the variance and covariance components of the multitrait model. Heritability estimates were 0.42 +/- 0.01, 0.53 +/- 0.03, and 0.10 +/- 0.01, for SC18, HP, and STAY, respectively. The genetic correlation estimates were 0.29 +/- 0.05, 0.19 +/- 0.05, and 0.64 +/- 0.07 between SC18 and HP, SC18 and STAY, and HP and STAY, respectively. The residual correlation estimate between HP and STAY was -0.08 +/- 0.03. The heritability values indicate the existence of considerable genetic variance for SC18 and HP traits. However, genetic correlations between SC18 and the female reproductive traits analyzed in the present study can only be considered moderate. The small residual correlation between HP and STAY suggests that environmental effects common to both traits are not major. The large heritability estimate for HP and the high genetic correlation between HP and STAY obtained in the present study confirm that EPD for HP can be used to select bulls for the production of precocious, fertile, and long-lived daughters. Moreover, SC18 could be incorporated in multitrait analysis to improve the prediction accuracy for HP genetic merit of young bulls.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79-88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix `Kw`) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.
Resumo:
In this paper we deal with robust inference in heteroscedastic measurement error models Rather than the normal distribution we postulate a Student t distribution for the observed variables Maximum likelihood estimates are computed numerically Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels Results of simulations and an application to a real data set are also reported (C) 2009 The Korean Statistical Society Published by Elsevier B V All rights reserved
Resumo:
In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.
Resumo:
Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].