Bias-corrected Pearson estimating functions for Taylor`s power law applied to benthic macrofauna data
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
18/10/2012
18/10/2012
2011
|
Resumo |
Estimation of Taylor`s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries. (C) 2011 Elsevier B.V. All rights reserved. FAPESP CNPq (Brazil) Danish Natural Science Research Council |
Identificador |
STATISTICS & PROBABILITY LETTERS, v.81, n.7, Special Issue, p.749-758, 2011 0167-7152 http://producao.usp.br/handle/BDPI/18944 10.1016/j.spl.2011.01.005 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Statistics & Probability Letters |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #Generalized linear model #Newton scoring algorithm #Power variance function #Species abundance data #Tweedie distribution #VARIANCE #BEHAVIOR #Statistics & Probability |
Tipo |
article original article publishedVersion |