Bias-corrected Pearson estimating functions for Taylor`s power law applied to benthic macrofauna data


Autoria(s): JORGENSEN, Bent; DEMETRIO, Clarice G. B.; KRISTENSEN, Erik; BANTA, Gary T.; PETERSEN, Hans Christian; DELEFOSSE, Matthieu
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

18/10/2012

18/10/2012

2011

Resumo

Estimation of Taylor`s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries. (C) 2011 Elsevier B.V. All rights reserved.

FAPESP

CNPq (Brazil)

Danish Natural Science Research Council

Identificador

STATISTICS & PROBABILITY LETTERS, v.81, n.7, Special Issue, p.749-758, 2011

0167-7152

http://producao.usp.br/handle/BDPI/18944

10.1016/j.spl.2011.01.005

http://dx.doi.org/10.1016/j.spl.2011.01.005

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Statistics & Probability Letters

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Generalized linear model #Newton scoring algorithm #Power variance function #Species abundance data #Tweedie distribution #VARIANCE #BEHAVIOR #Statistics & Probability
Tipo

article

original article

publishedVersion