71 resultados para calibration estimation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Fourier transform near infrared (FT-NIR) spectroscopy was evaluated as an analytical too[ for monitoring residual Lignin, kappa number and hexenuronic acids (HexA) content in kraft pulps of Eucalyptus globulus. Sets of pulp samples were prepared under different cooking conditions to obtain a wide range of compound concentrations that were characterised by conventional wet chemistry analytical methods. The sample group was also analysed using FT-NIR spectroscopy in order to establish prediction models for the pulp characteristics. Several models were applied to correlate chemical composition in samples with the NIR spectral data by means of PCR or PLS algorithms. Calibration curves were built by using all the spectral data or selected regions. Best calibration models for the quantification of lignin, kappa and HexA were proposed presenting R-2 values of 0.99. Calibration models were used to predict pulp titers of 20 external samples in a validation set. The lignin concentration and kappa number in the range of 1.4-18% and 8-62, respectively, were predicted fairly accurately (standard error of prediction, SEP 1.1% for lignin and 2.9 for kappa). The HexA concentration (range of 5-71 mmol kg(-1) pulp) was more difficult to predict and the SEP was 7.0 mmol kg(-1) pulp in a model of HexA quantified by an ultraviolet (UV) technique and 6.1 mmol kg(-1) pulp in a model of HexA quantified by anion-exchange chromatography (AEC). Even in wet chemical procedures used for HexA determination, there is no good agreement between methods as demonstrated by the UV and AEC methods described in the present work. NIR spectroscopy did provide a rapid estimate of HexA content in kraft pulps prepared in routine cooking experiments.
Resumo:
The knowledge of soil water storage (SWS) of soil profiles is crucial for the adoption of vegetation restoration practices. With the aim of identifying representative sites to obtain the mean SWS of a watershed, a time stability analysis of neutron probe evaluations of SWS was performed by the means of relative differences and Spearman rank correlation coefficients. At the same time, the effects of different neutron probe calibration procedures were explored on time stability analysis. mean SWS estimation. and preservation of the spatial variability of SWS. The selected watershed, with deep gullies and undulating slopes which cover an area of 20 ha, is characterized by an Ust-Sandiic Entisol and an Aeolian sandy soil. The dominant vegetation species are bunge needlegrass (Stipa bungeana Trim) and korshinsk peashrub (Carugano Korshinskii kom.). From June 11, 2007 to July 23,2008, SWS of the top1 m soil layer was evaluated for 20 dates, based on neutron probe data of 12 sampling sites. Three calibration procedures were employed: type 1, most complete, with each site having its own linear calibration equation (TrE); type II. with TrE equations extended over the whole field: and type III, with one single linear calibration curve for the whole field (UnE) and also correcting its intercept based on site specific relative difference analysis (RdE) and on linear fitting of data (RcE), both maintaining the same slope. A strong time stability of SWS estimated by TrE equations was identified. Soil particle size and soil organic matter content were recognized as the influencing factors for spatial variability of SWS. Land use influenced neither the spatial variability nor the time stability of SWS. Time stability analysis identified one site to represent the mean SWS of the whole watershed with mean absolute percentage errors of less than 10%, therefore. this site can be used as a predictor for the mean SWS of the watershed. Some equations of type II were found to be unsatisfactory to yield reliable mean SWS values or in preserving the associated soil spatial variability. Hence, it is recommended to be cautious in extending calibration equations to other sites since they might not consider the field variability. For the equations with corrected intercept (type III), which consider the spatial variability of calibration in a different way in relation to TrE, it was found that they can yield satisfactory means and standard deviation of SWS, except for the RdE equations, which largely leveled off the SWS values in the watershed. Correlation analysis showed that the neutron probe calibration was linked to soil bulk density and to organic matter content. Therefore, spatial variability of soil properties should be taken into account during the process of neutron probe calibration. This study provides useful information on the mean SWS observation with a time stable site and on distinct neutron probe calibration procedures, and it should be extended to soil water management studies with neutron probes, e.g., the process of vegetation restoration in wider area and soil types of the Loess Plateau in China. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this article, we present the EM-algorithm for performing maximum likelihood estimation of an asymmetric linear calibration model with the assumption of skew-normally distributed error. A simulation study is conducted for evaluating the performance of the calibration estimator with interpolation and extrapolation situations. As one application in a real data set, we fitted the model studied in a dimensional measurement method used for calculating the testicular volume through a caliper and its calibration by using ultrasonography as the standard method. By applying this methodology, we do not need to transform the variables to have symmetrical errors. Another interesting aspect of the approach is that the developed transformation to make the information matrix nonsingular, when the skewness parameter is near zero, leaves the parameter of interest unchanged. Model fitting is implemented and the best choice between the usual calibration model and the model proposed in this article was evaluated by developing the Akaike information criterion, Schwarz`s Bayesian information criterion and Hannan-Quinn criterion.
Resumo:
The Grubbs` measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes, In order to identify outliers and to criticize the model building we use the local influence procedure in a Study to compare the precision of several thermocouples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a Bayesian approach for estimation in the skew-normal calibration model, as well as the conditional posterior distributions which are useful for implementing the Gibbs sampler. Data transformation is thus avoided by using the methodology proposed. Model fitting is implemented by proposing the asymmetric deviance information criterion, ADIC, a modification of the ordinary DIC. We also report an application of the model studied by using a real data set, related to the relationship between the resistance and the elasticity of a sample of concrete beams. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
We present a computer program developed for estimating penetrance rates in autosomal dominant diseases by means of family kinship and phenotype information contained within the pedigrees. The program also determines the exact 95% credibility interval for the penetrance estimate. Both executable (PenCalc for Windows) and web versions (PenCalcWeb) of the software are available. The web version enables further calculations, such as heterozygosity probabilities and assessment of offspring risks for all individuals in the pedigrees. Both programs can be accessed and down-loaded freely at the home-page address http://www.ib.usp.br/~otto/software.htm.
Resumo:
The objective of this study was to estimate the regressions calibration for the dietary data that were measured using the quantitative food frequency questionnaire (QFFQ) in the Natural History of HPV Infection in Men: the HIM Study in Brazil. A sample of 98 individuals from the HIM study answered one QFFQ and three 24-hour recalls (24HR) at interviews. The calibration was performed using linear regression analysis in which the 24HR was the dependent variable and the QFFQ was the independent variable. Age, body mass index, physical activity, income and schooling were used as adjustment variables in the models. The geometric means between the 24HR and the calibration-corrected QFFQ were statistically equal. The dispersion graphs between the instruments demonstrate increased correlation after making the correction, although there is greater dispersion of the points with worse explanatory power of the models. Identification of the regressions calibration for the dietary data of the HIM study will make it possible to estimate the effect of the diet on HPV infection, corrected for the measurement error of the QFFQ.
Resumo:
It is well known that striation spacing may be related to the crack growth rate, da/dN, through Paris equation, as well as the maximum and minimum loads under service loading conditions. These loads define the load ratio, R, and are considered impossible to be evaluated from the inter-spacing striations analysis. In this way, this study discusses the methodology proposed by Furukawa to evaluate the maximum and minimum loads based on the experimental fact that the relative height of a striation, H, and the striation spacing, s, are strongly influenced by the load ratio, R. Fatigue tests in C(T) specimens were conducted on SAE 7475-T7351 Al alloy plates at room temperature and the results showed a straightforward correlation between the parameters H, s, and R. Measurements of striation height, H, were performed using scanning electron microscopy and field emission gun (FEG) after sectioning the specimen at a large inclined angle to amplify the height of the striations. The results showed that for increasing R the values of H/s tend to increase. Striation height, striation spacing, and load ratio correlations were obtained, which allows one to estimate service loadings from fatigue fracture surface survey.
Resumo:
The aim of this study was to compare REML/BLUP and Least Square procedures in the prediction and estimation of genetic parameters and breeding values in soybean progenies. F(2:3) and F(4:5) progenies were evaluated in the 2005/06 growing season and the F(2:4) and F(4:6) generations derived thereof were evaluated in 2006/07. These progenies were originated from two semi-early, experimental lines that differ in grain yield. The experiments were conducted in a lattice design and plots consisted of a 2 m row, spaced 0.5 m apart. The trait grain yield per plot was evaluated. It was observed that early selection is more efficient for the discrimination of the best lines from the F(4) generation onwards. No practical differences were observed between the least square and REML/BLUP procedures in the case of the models and simplifications for REML/BLUP used here.
Resumo:
This paper presents a new statistical algorithm to estimate rainfall over the Amazon Basin region using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm relies on empirical relationships derived for different raining-type systems between coincident measurements of surface rainfall rate and 85-GHz polarization-corrected brightness temperature as observed by the precipitation radar (PR) and TMI on board the TRMM satellite. The scheme includes rain/no-rain area delineation (screening) and system-type classification routines for rain retrieval. The algorithm is validated against independent measurements of the TRMM-PR and S-band dual-polarization Doppler radar (S-Pol) surface rainfall data for two different periods. Moreover, the performance of this rainfall estimation technique is evaluated against well-known methods, namely, the TRMM-2A12 [ the Goddard profiling algorithm (GPROF)], the Goddard scattering algorithm (GSCAT), and the National Environmental Satellite, Data, and Information Service (NESDIS) algorithms. The proposed algorithm shows a normalized bias of approximately 23% for both PR and S-Pol ground truth datasets and a mean error of 0.244 mm h(-1) ( PR) and -0.157 mm h(-1)(S-Pol). For rain volume estimates using PR as reference, a correlation coefficient of 0.939 and a normalized bias of 0.039 were found. With respect to rainfall distributions and rain area comparisons, the results showed that the formulation proposed is efficient and compatible with the physics and dynamics of the observed systems over the area of interest. The performance of the other algorithms showed that GSCAT presented low normalized bias for rain areas and rain volume [0.346 ( PR) and 0.361 (S-Pol)], and GPROF showed rainfall distribution similar to that of the PR and S-Pol but with a bimodal distribution. Last, the five algorithms were evaluated during the TRMM-Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) 1999 field campaign to verify the precipitation characteristics observed during the easterly and westerly Amazon wind flow regimes. The proposed algorithm presented a cumulative rainfall distribution similar to the observations during the easterly regime, but it underestimated for the westerly period for rainfall rates above 5 mm h(-1). NESDIS(1) overestimated for both wind regimes but presented the best westerly representation. NESDIS(2), GSCAT, and GPROF underestimated in both regimes, but GPROF was closer to the observations during the easterly flow.
Resumo:
Multifilter rotating shadowband radiometer (MFRSR) calibration values for aerosol optical depth (AOD) retrievals were determined by means of the general method formulated by Forgan [Appl. Opt. 33, 4841 (1994)] at a polluted urban site. The obtained precision is comparable with the classical method, the Langley plot, applied on clean mountaintops distant of pollution sources. The AOD retrieved over Sao Paulo City with both calibration procedures is compared with the Aerosol Robotic Network data. The observed results are similar, and, except for the shortest wavelength (415 nm), the MFRSR`s AOD is systematically overestimated by similar to 0.03. (c) 2008 Optical Society of America.
Resumo:
The reverse engineering problem addressed in the present research consists of estimating the thicknesses and the optical constants of two thin films deposited on a transparent substrate using only transmittance data through the whole stack. No functional dispersion relation assumptions are made on the complex refractive index. Instead, minimal physical constraints are employed, as in previous works of some of the authors where only one film was considered in the retrieval algorithm. To our knowledge this is the first report on the retrieval of the optical constants and the thickness of multiple film structures using only transmittance data that does not make use of dispersion relations. The same methodology may be used if the available data correspond to normal reflectance. The software used in this work is freely available through the PUMA Project web page (http://www.ime.usp.br/similar to egbirgin/puma/). (C) 2008 Optical Society of America
Resumo:
We consider the problem of interaction neighborhood estimation from the partial observation of a finite number of realizations of a random field. We introduce a model selection rule to choose estimators of conditional probabilities among natural candidates. Our main result is an oracle inequality satisfied by the resulting estimator. We use then this selection rule in a two-step procedure to evaluate the interacting neighborhoods. The selection rule selects a small prior set of possible interacting points and a cutting step remove from this prior set the irrelevant points. We also prove that the Ising models satisfy the assumptions of the main theorems, without restrictions on the temperature, on the structure of the interacting graph or on the range of the interactions. It provides therefore a large class of applications for our results. We give a computationally efficient procedure in these models. We finally show the practical efficiency of our approach in a simulation study.
Resumo:
The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance. but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective. - The aim of this study was to propose a new method that allows for the estimation of critical power (CP) from non-exhaustive tests using ratings of perceived exertion (RPE). Methods. - Twenty-two subjects underwent two practice trials for ergometer and Borg 15-point scale familiarization, and adaptation to severe exhaustive exercise. After then, four exercise bouts were performed on different days for the estimation of CP and anaerobic work capacity (AWC) by linear work-time equation, and CP(15), CP(17), AWC(15) and AWC(17) were estimated using the work and time to attainment of RPE15 and RPE17 based on the Borg 15-point scale. Results. - The CP, CP(15) and CP(17) (170-177W) were not significantly different (P>0.05). However, AWC, AWC(15) and AWC(17) were all different from each other. The correlations between CP(15) and CP(17), with CP were strong (R=0.871 and 0.911, respectively), but the AWC(15) and AWC(17) were not significantly correlated with AWC. Conclusion. - Sub-maximal. RPE responses can be used for the estimation of CP from non-exhaustive exercise protocols. (C) 2009 Elsevier Masson SAS. All rights reserved.