Skew-normal linear calibration: a Bayesian perspective


Autoria(s): FIGUEIREDO, Cleber da Costa; SANDOVAL, Monica Carneiro; BOLFARINE, Heleno; LIMA, Claudia Regina O. P.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

In this paper, we present a Bayesian approach for estimation in the skew-normal calibration model, as well as the conditional posterior distributions which are useful for implementing the Gibbs sampler. Data transformation is thus avoided by using the methodology proposed. Model fitting is implemented by proposing the asymmetric deviance information criterion, ADIC, a modification of the ordinary DIC. We also report an application of the model studied by using a real data set, related to the relationship between the resistance and the elasticity of a sample of concrete beams. Copyright (C) 2008 John Wiley & Sons, Ltd.

Brazilian Agency

Brazilian Agency

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq

Identificador

JOURNAL OF CHEMOMETRICS, v.22, n.7/Ago, p.472-480, 2008

0886-9383

http://producao.usp.br/handle/BDPI/30531

10.1002/cem.1178

http://dx.doi.org/10.1002/cem.1178

Idioma(s)

eng

Publicador

WILEY-BLACKWELL

Relação

Journal of Chemometrics

Direitos

restrictedAccess

Copyright WILEY-BLACKWELL

Palavras-Chave #Gibbs sampler #skewness #skew-normal distribution #hierarchical model #DISTRIBUTIONS #Automation & Control Systems #Chemistry, Analytical #Computer Science, Artificial Intelligence #Instruments & Instrumentation #Mathematics, Interdisciplinary Applications #Statistics & Probability
Tipo

article

original article

publishedVersion